
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Regular Prelim 1 Solutions March 2017

1. Object Diagramming and Terminology.

(a) [8 points] Suppose there is a class Acct defined in file a2.py where Acct objects have a
balance attribute. Consider the following code and associated memory diagrams. Eight
items in the diagram have been labeled (A) through (H). Match the vocabulary terms
below the diagram with a labeled example by writing a letter next to each term.

1 from a2 import *

2 def swap(source, to):

3 """Swap balance of Acct <source> and balance of Acct <to>"""

4 tmp = source.balance

5 source.balance = to.balance

6 to.balance = tmp

7
8 a1 = Acct(50)

9 a2 = Acct(25)

10 swap(a1,a2)

Acct
id1

Acct

balance 50 25

id2

id1a1

id2a2
balance 25 50

swap 4 5 6

id1source id2to

50tmp NoneRETURN

A

D

E

F

C

H

B

G

Local Variable: Global Variable: Parameter: Attribute:

Object: Call Frame: Heap Space: Global Space:

Solution: H, D, G, E
F, C, B, A

Last Name: First Name: Cornell NetID:

(b) [9 points] Consider the following 6 lines entered in Python interactive mode. Diagram all
variables and objects created at the end of execution. Do not diagram any call frames.

>>> x = 1

>>> y = x

>>> x = 2

>>> p = [1,2]

>>> q = p

>>> p[1] = 5

Solution: Here is a “typeable” description of the solution. An arrow (“->”) means a
change in value.

x: 1->2 y: 1

p: id1 q: id1

id1: list object containing 1, 2->5

Page 2

Last Name: First Name: Cornell NetID:

2. String processing, testing.

In the US, 10-digit telephone numbers are typically represented in one of the two following
styles:

“Parenthetical”: (555) 666-1110
“Dashed”: 555-666-1110

There is no whitespace in a Dashed phone number: they are all exactly 12 characters long.

There is only one space in a Parenthetical phone number, and it is after the “)”; they are
all exactly 14 characters long, counting the space.

(a) [10 points] Implement the following function according to its specification.

def phone_to_paren(s):

""" Returns: a string representing the phone number s in Parenthetical form.

Precondition: s is a non-empty string that *would* be a valid Dashed phone number

EXCEPT that it possibly has spaces around the dashes.

Examples: '555-666-1110'
'555 - 666 - 1110'
'555 - 666-1110'
... all yield the same result, '(555) 666-1110' """

Solution:

One solution:

idash1 = s.index('-')
idash2 = s.rindex('-')
areacode = s[:idash1].strip()

second = s[idash1+1:idash2].strip()

third = s[idash2+1:].strip()

return '(' + areacode + ') ' + second + '-' + third

Another solution:

parts = s.split('-')
return '(' + parts[0].strip() + ') ' + parts[1].strip() + '-' + parts[2].strip()

A one-line solution:

return '(' + '-'.join(map(str.strip, s.split('-'))).replace('-', ') ', 1)

The above uses replace with three arguments: somestring.replace(’-’, ’)’, 1) re-
places just the first ‘-’ in a string somestring with a close parenthesis ‘)’.

Page 3

Last Name: First Name: Cornell NetID:

(b) [6 points] Consider the following function specification.

def area_code(s):

""" Returns: an int representing the area code (first three digits)

of a telephone number in string s.

Precondition: s is a non-empty string that *would* be a valid Dashed or

Parenthetical phone number, EXCEPT it possibly has spaces around the dashes."""

Write three conceptually distinct test cases for this function in the table below.

Solution: "(555) 666-1110" is a valid Parenthetical. "(555) 666 - 1110" is
a would-be Parenthetical except with spaces around the dashes. "555 - 666 -

1110" is a would-be Dashed except with spaces around the dashes. "555-666-1110" is a
valid Dashed.

Inputs that violated the preconditions were not valid solutions.

Test case #1
Input and expected output:

Rationale:

Test case #2
Input and expected output:

Rationale:

Test case #3
Input and expected output:

Page 4

Last Name: First Name: Cornell NetID:

Rationale:

3. [10 points] Time for Objects! The Time class is defined so that Time objects have two
attributes, hours and minutes.

Write the body for the function below so that it implements its specification.

You may assume it is being defined in the same file as the definition for Time, so that you can
create a new Time object with, say, 1 hour 30 minutes via the call Time(1,30).

def mirror_time(t):

"""Modifies Time object t to be its "mirror image" on the clock.

Does NOT create a new object; does not return a value.

To get a "mirror image" time:

1. If the hours are 12, then the hours should stay the same.

Otherwise, take 12 and subtract the hours to get the new hours.

2. If the minutes are 0, then the minutes should stay the same.

Otherwise, take 60 and subtract the minutes to get the new minutes.

Examples: 10:10 -> 2:50

12:00 -> 12:00

4:30 -> 8:30

Precondition: t is a Time object with hours <= 12, minutes <= 59 """.

Solution:

if t.hours != 12:

t.hours = 12 - t.hours

if t.minutes != 0:

t.minutes = 60 - t.minutes

Page 5

Last Name: First Name: Cornell NetID:

4. [16 points] Banking on objects. Suppose you are working on a file that defines two classes:

• Acct: Acct objects have a float attribute, balance

• Person: Person objects have two attributes:

– partner, which is either a Person object or None

– bank_acct, which is an Acct object.

Inside the same file that defines the classes Acct and Person is also the following function header
and specification. Write the body of the function so that it implements its specification.

def groupem(p1, p2):

""" 1. Creates a new Acct whose balance is the sum of the balances of

p1 and p2's bank_acct objects;

2. Changes the balances of both p1's bank_acct and p2's bank_acct to 0

3. Changes both p1's bank_acct and p2's bank_acct to the new Acct

4. Makes the partner of p1 be p2 and the partner of p2 be p1.

Preconditions: p1 and p2 are Persons whose partners are both None."""

hint: if p1 is a Person, p1.bank_acct is an Acct. So you can write

(p1.bank_acct).balance, or even p1.bank_acct.balance

Solution:

Making some aliases to reduce typing

old_a1 = p1.bank_acct

old_a2 = p2.bank_acct

new_acct = Acct(old_a1.balance + old_a2.balance)

old_a1.balance = 0.0

old_a2.balance = 0.0

p1.bank_acct = new_acct

p2.bank_acct = new_acct

p1.partner = p2

p2.partner = p1

Page 6

Last Name: First Name: Cornell NetID:

5. [7 points] The import of import. Suppose file andersen.py defines a function is_the_one

that takes a string as input, performs some computation, and returns a Boolean.

And, suppose file lee.py also defines a function is_the_one that takes a string as input, but
performs some possibly different computation, and returns a Boolean.

Finally, suppose you are writing code in a third file matrix.py, which is currently empty.

Write code to be placed in the third file that:

• stores in variable neo the result of calling the andersen.py version of is_the_one on the
string "Thomas"; and

• stores in variable oracle the result of calling the lee.py version of is_the_one on the
string "Thomas"

Solution: Multiple solutions are possible, but many close variants are incorrect.

Most straightforward version:

import andersen

import lee

neo = andersen.is_the_one("Thomas")

oracle = lee.is_the_one("Thomas")

Fancy version using keyword as (which we didn’t talk about in lecture)

from andersen import is_the_one as f1

from lee import is_the_one as f2

neo = f1("Thomas")

oracle = f2("Thomas")

Interleaved version — NOT recommended, but legal:

from andersen import *

neo = is_the_one("Thomas")

from lee import *

oracle = is_the_one("Thomas")

Page 7

Last Name: First Name: Cornell NetID:

6. For-loop analysis. Consider the following function header and specification:

def vowel_in_common(s1,s2):

"""Let the vowels be defined as a, e, i, o, u.

If there is some vowel v contained in both s1 and s2, return a list

of the index of the first v in s1 and the index of the first v in s2.

If there is more than one such vowel v, v = the alphabetically first one.

If s1 and s2 have no vowel in common, return the list [-1, -1].

Preconditions: s1 and s2 are non-empty strings.

Examples:

vowel_in_common("brad", "angelina") -> [2, 0]

vowel_in_common("romeo", "romeo") -> [3, 3]

vowel_in_common("dan", "phil") -> [-1, -1]

"""

Here is one proposed implementation of vowel in common. It may or may not be correct.

for v in ['a', 'e', 'i', 'o', 'u']:
i1 = s1.find(v)

i2 = s2.find(v)

if i1 != -1 and i2 != -1:

return [i1, i2]

else:

return [-1, -1]

Page 8

Last Name: First Name: Cornell NetID:

(a) [6 points] Suppose someone makes the call

indices = vowel in common("brad", "angelina"),

What is the value of local variable v just before the function returns? Solution: “a”

What is the return value of the call? Solution: [2, 0]

(b) [4 points] Suppose someone makes the call

indices = vowel in common("romeo", "romeo"),

What is the value of local variable v just before the function returns? Solution: “a”

What is the return value of the call? Solution: [-1, -1]

So, this loop is actually incorrect.

Page 9

Last Name: First Name: Cornell NetID:

(c) [7 points] Here is an alternative proposed implementation of vowel in common. It may or
may not be correct.

found = "" # first vowel found in both

for v in ['a', 'e', 'i', 'o', 'u']:
if v in s1 and v in s2 and found == "":

found = v

if v == "":

return [-1, -1]

else:

return [s1.index(v), s2.index(v)]

Suppose someone makes the call

indices = vowel in common("brad", "angelina"),

For the alternative implementation, what is the value of local variable v just before the
function returns? Solution: “u” (loop goes to last list item)

What is the value of local variable found just before the function returns? Solution: “a”

What is the return value of the call? Solution: an error (an index error, although students

don’t need to specify this: no “u” in s1 (or s2).

So, this loop is also incorrect.

Page 10

Last Name: First Name: Cornell NetID:

7. [10 points] Lists. The Towers of Hanoi is a famous math puzzle that involves moving circular
disks (with a hole in the middle) from one tower to another. There are three towers: “left”,
“middle”, and “right”, and each disk has a unique size. The goal is to move all of the disks
from the left tower to the right tower without putting a larger disk on top of a smaller disk.

4
3
2
1

left middle right

The towers can be represented in Python as lists of integers. Each disk has its own unique
associated integer. The first element in the list represents the bottom of the tower, and the
last element represents the top. For example, the above setup could be represented as:

left = [4, 3, 2, 1]

middle = []

right = []

Below is the specification of a function move to move disks (integers) from one list to another.
For example, after executing the following code:

left = [4, 3, 2, 1]

middle = []

move(left, middle)

left should contain [4, 3, 2] and middle should contain [1].

def move(from_tower, to_tower):

'''Tries to move a disk from from_tower to to_tower. More specifically,

* if to_tower is empty, or if to_tower is not empty and its last element is

larger than the last element of from_tower, then removes the integer at the

end of from_tower and appends it to the end of to_tower.

* otherwise, does nothing.

Precondition: from_tower and to_tower are lists of integers representing

disks. from_tower has at least one disk. to_tower may be an empty list.

Procedure, not a fruitful function, so no return.'''

Implement this function on the next page.

Page 11

Last Name: First Name: Cornell NetID:

Put your code for function move below.

Solution:

i_from = len(from_tower)-1 # index of top of from_tower

i_to = len(to_tower)-1 # index of top of to_tower UNLESS to_tower is empty

Tricky issue: don't want to check the last item in to_tower if

to_tower is empty!

if to_tower == [] or \

to_tower[i_to] > from_tower[i_from]: # Short circuit eval means do not

get here unless to_tower != []

to_tower.append(from_tower.pop(i_from))

Page 12

Last Name: First Name: Cornell NetID:

8. [10 points] String Processing. Write this function’s body so that it implements its specifi-
cation.

def glue(name1, stop1, name2, start2):

"""Returns:

-1 if stop1 is not a valid index for name1 or if

start2 is not a valid index for name2

Otherwise, returns a new string formed by concatenating:

the substring of name1 starting at index 0 and ending at index stop1

with

the substring of name2 starting at index start2 and going to the end

Preconditions:

name1 and name2 are non-empty strings of lowercase letters

stop1 and start2 are nonnegative ints

Examples:

glue("jules", 1, "vincent", 3) -> "jucent"

glue("jules", 4, "vincent", 4) -> "julesent"

glue("jules", 2, "vincent", 0) -> "julvincent",

glue("jules", 5, "vincent", 4) -> -1

glue("jules", 1, "vincent", 100) -> -1

"""

Solution:

if stop1 >= len(name1) or start2 >= len(name2):

return -1

else:

return name1[0:stop1+1] + name2[start2:]

Alternative solution using try/except:

try:

Trick: just throw IndexError if stop1 or start2 aren't good indices;

storing in a garbage variable for student readability

We need this line because string slicing accepts invalid indices.

just_index_check = [name1[stop1], name2[start2]]

return name1[0:stop1+1] + name2[start2:]

except IndexError:

this could also happen if name1/name2 empty

return -1

Page 13

Last Name: First Name: Cornell NetID:

9. [1 point] Write your last name, first name, and Cornell NetID at the top of each page.

Solution: Always do this! It prevents disaster in cases where a staple fails.

Page 14

