
More Recursion

Presentation 15

Announcements for This Lecture

Assignments and Labs

• View the lesson videos
§ Videos 17.6-17.11 for today
§ Lesson 18 next time
§ Also Videos 19.1-19.7
§ Note this is a lot of videos

• Exam graded by Saturday
§ Will appear in GradeScope
§ Note Submission renamed

10/22/20 2More Recursion

• Need to be working on A4
§ Just reading it takes a while
§ Slightly longer than A3
§ Finish 1-3 before Tuesday

• Labs: lots of practice!
§ Many optional functions
§ Exam questions on Prelim 2
§ Great way to study

Other Announcements

More Divide and Conquer

def decode(nlist):
"""
Returns a string that represents the decoded nlist

The nlist a list of lists, where each element is a character, number.
The number is the number of times to repeat the character.

Example: decode([['a',3],['h',1],['a',1]]) is 'aaaha'

Precondition: nlist is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer
"""
pass

10/22/20 More Recursion 3

More Divide and Conquer

def decode(nlist):
"""
Returns a string that represents the decoded nlist

The nlist a list of lists, where each element is a character, number.
The number is the number of times to repeat the character.

Example: decode([['a',3],['h',1],['a',1]]) is 'aaaha'

Precondition: nlist is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer
"""
pass

10/22/20 More Recursion 4

How Divide?
A: Cut in half
B: Pull off one elt.
C: Does not matter

More Divide and Conquer

def decode(nlist):
"""
Returns a string that represents the decoded nlist

The nlist a list of lists, where each element is a character, number.
The number is the number of times to repeat the character.

Example: decode([['a',3],['h',1],['a',1]]) is 'aaaha'

Precondition: nlist is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer
"""
pass

10/22/20 More Recursion 5

How Combine?
A: Add left, right
B: Add right, left
C: Something trickier

More Divide and Conquer

def encode(text):
"""
Returns a nested list encoding the duplication of each character

The returned list is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer.

Example: encode('aaaha') is [['a',3],['h',1],['a',1]]

Precondition: text is a (possibly empty) string
"""
pass

10/22/20 More Recursion 6

More Divide and Conquer

def encode(text):
"""
Returns a nested list encoding the duplication of each character

The returned list is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer.

Example: encode('aaaha') is [['a',3],['h',1],['a',1]]

Precondition: text is a (possibly empty) string
"""
pass

10/22/20 More Recursion 7

How Divide?
A: Cut in half
B: Pull off one elt.
C: Does not matter

More Divide and Conquer

def encode(text):
"""
Returns a nested list encoding the duplication of each character

The returned list is a (possibly empty) nested list of two-element
lists, where each list inside is a pair of a character and an integer.

Example: encode('aaaha') is [['a',3],['h',1],['a',1]]

Precondition: text is a (possibly empty) string
"""
pass

10/22/20 More Recursion 8

How Combine?
A: Add left, right
B: Add right, left
C: Something trickier

Here is a HARD One
def segregate(nlist):

"""
Returns a tuple segregating nlist into negative and non-negative.

This function returns a tuple (pos,rlist). The value rlist is a reordered copy of nlist
where negatives come before the non-negatives. However, ordering inside each
part (negative, non-negatives) should remain EXACTLY as it is in nlist.

The value pos indicates the first position of a non-negative number in rlist.
If there are no non-negative numbers, pos is -1.

Example: segregate([1, -1, 2, -5, -3, 0]) returns (3, [-1, -5, -3, 1, 2, 0])

Precondition: nlist is a (possibly empty) list of numbers
"""
pass

10/22/20 More Recursion 9

Here is a HARD One
def segregate(nlist):

"""
Returns a tuple segregating nlist into negative and non-negative.

This function returns a tuple (pos,rlist). The value rlist is a reordered copy of nlist
where negatives come before the non-negatives. However, ordering inside each
part (negative, non-negatives) should remain EXACTLY as it is in nlist.

The value pos indicates the first position of a non-negative number in rlist.
If there are no non-negative numbers, pos is -1.

Example: segregate([1, -1, 2, -5, -3, 0]) returns (3, [-1, -5, -3, 1, 2, 0])

Precondition: nlist is a (possibly empty) list of numbers
"""
pass

10/22/20 More Recursion 10

How Divide?
A: Cut in half
B: Pull off one elt.
C: Does not matter

Working with Objects

def ancestors(p):
"""
Returns the list of names of all ancestors of p

The name of p should not be in the list (unless another ancestor has
this name). Duplicates names (e.g. ancestors with the same name)
are okay.

The list returned should be sorted alphabetically

See family.py for examples

Precondition: p is a Person and not None
"""
pass

10/22/20 More Recursion 11

Working with Objects

def ancestors(p):
"""
Returns the list of names of all ancestors of p

The name of p should not be in the list (unless another ancestor has
this name). Duplicates names (e.g. ancestors with the same name)
are okay.

The list returned should be sorted alphabetically

See family.py for examples

Precondition: p is a Person and not None
"""
pass

10/22/20 More Recursion 12

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Working with Objects

def ancestors(p):
"""
Returns the list of names of all ancestors of p

The name of p should not be in the list (unless another ancestor has
this name). Duplicates names (e.g. ancestors with the same name)
are okay.

The list returned should be sorted alphabetically

See family.py for examples

Precondition: p is a Person and not None
"""
pass

10/22/20 More Recursion 13

Why is a helper needed?
A: It is needed to make list
B: It is needed to sort list
C: No helper is needed

Working with Objects

def ancestors(p):
"""
Returns the list of names of all ancestors of p

The name of p should not be in the list (unless another ancestor has
this name). Duplicates names (e.g. ancestors with the same name)
are okay.

The list returned should be sorted alphabetically

See family.py for examples

Precondition: p is a Person and not None
"""
pass

10/22/20 More Recursion 14

Why is a helper needed?
A: It is needed to make list
B: It is needed to sort list
C: No helper is needed

Working with Objects

def related(p,q):
"""
Returns True if Persons p and q are related, False otherwise
If either p or q is None, this function returns False.

Two people are related if they have a common person in their family
tree (including themselves). A recursive way of saying this is that
either they are the same person, or one of them is related to an
ancestor (parent, grandparent, etc.) of another.

Preconditions: p and q are each a Person or None
"""
pass

10/22/20 More Recursion 15

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Working with Objects

def related(p,q):
"""
Returns True if Persons p and q are related, False otherwise
If either p or q is None, this function returns False.

Two people are related if they have a common person in their family
tree (including themselves). A recursive way of saying this is that
either they are the same person, or one of them is related to an
ancestor (parent, grandparent, etc.) of another.

Preconditions: p and q are each a Person or None
"""
pass

10/22/20 More Recursion 16

How Divide?
A: By mother, father
B: By siblings (brother, sister)
C: Not a divide-and-conquer

Working with Objects

def related(p,q):
"""
Returns True if Persons p and q are related, False otherwise
If either p or q is None, this function returns False.

Two people are related if they have a common person in their family
tree (including themselves). A recursive way of saying this is that
either they are the same person, or one of them is related to an
ancestor (parent, grandparent, etc.) of another.

Preconditions: p and q are each a Person or None
"""
pass

10/22/20 More Recursion 17

How Divide?
A: By mother, father
B: By siblings (brother, sister)
C: Not a divide-and-conquer

Turtle Demo!

10/22/20 More Recursion 18

Turn

Move Change Color

Draw Line

Questions?

10/22/20 More Recursion 19

