Lecture 14

Recursion

Announcements for Today

Assignments

- Assignment 3 now graded
- Mean 96.3, Median 99
- Time: 7.5 hr , StdDev: 3.5 hr
- With 666 responses (nice!)
- Assignment 4 is now up!
- Parts 1-3: Can do already
- Part 4: Material from today
- Part 5: Covered on Thursday
- Due in two weeks

Other Announcements

- View the lesson videos
- Videos 17.1-16.5 for today
- Videos 17.6-17.11 next time
- New videos posted Thursday
- Prelim to be graded Saturday
- Will post grade in evening
- Will give grade boundaries
- In time for drop deadline
- But Bs are good grades!

Activity Time: The Call Stack

Function Definitions

Function Call

1 def foo(x):
$2 \quad \mathrm{y}=\mathrm{x}+1$ return $\operatorname{bar}(\mathrm{y}+\mathrm{l})$

4
5 def $\operatorname{bar}(\mathrm{y})$:
6 return foo(y -1)
>>> foo(l)
Assume we are here:

What is the next step?

Which One is Closest to Your Answer?

Which One is Closest to Your Answer?

Activity Time: The Call Stack

Function Definitions

Function Call

1 def foo(x):
$2 \quad \mathrm{y}=\mathrm{x}+1$
3 return $\operatorname{bar}(\mathrm{y}+\mathrm{l})$
4
5 def $\operatorname{bar}(\mathrm{y})$:
6 return foo(y-1)
>>> foo(l)
A:

What is the next step?

Which One is Closest to Your Answer?

Activity Time: The Call Stack

Function Definitions

Function Call

1 def foo(x):
$2 \quad \mathrm{y}=\mathrm{x}+1$
3 return $\operatorname{bar}(\mathrm{y}+\mathrm{l})$
4
5 def $\operatorname{bar}(\mathrm{y})$:
6 return foo(y-1)

Simple Recursive Function

def lucas(n,p,q):

IIIII
Returns the nth Lucas number for coefficients p and q .
A Lucas number is a generalization of the Fibonacci Sequence. The nth Lucas number $L(n)$ is given by the recursive definition

$$
\begin{aligned}
& \mathrm{L}(0)=0 \\
& \mathrm{~L}(1)=1 \\
& \mathrm{~L}(\mathrm{n})=\mathrm{p}^{*} \mathrm{~L}(\mathrm{n}-1)-\mathrm{q}^{*} \mathrm{~L}(\mathrm{n}-2)
\end{aligned}
$$

Preconditions: n is an int $>=0, \mathrm{p}$ and q are ints IIIII
pass

Simple Recursive Function

def lucas(n,p,q):
"""
Returns the nth Lucas number for coef Base Case?
A Lucas number is a generalization of $4: n=0$
The nth Lucas number $L(n)$ is given by

$$
\begin{aligned}
& \mathrm{L}(0)=0 \\
& \mathrm{~L}(1)=1 \\
& \mathrm{~L}(\mathrm{n})=\mathrm{p}^{*} \mathrm{~L}(\mathrm{n}-1)-\mathrm{q}^{*} \mathrm{~L}(\mathrm{n}-2)
\end{aligned}
$$

Preconditions: n is an int $>=0, \mathrm{p}$ is an

B: $\mathrm{n}=1$
C: $\mathrm{n}=0, \mathrm{n}=1$
D: $\mathrm{n}=0, \mathrm{p}=0$
E: $n=0, p=0, q=0$
pass

Simple Recursive Function

def lucas(n,p,q):
IIII
Returns the nth Lucas number for coef Base Case?
A Lucas number is a generalization of $4: n=0$
The nth Lucas number $L(n)$ is given by

$$
\begin{aligned}
& \mathrm{L}(0)=0 \\
& \mathrm{~L}(1)=1 \\
& \mathrm{~L}(\mathrm{n})=\mathrm{p} * \mathrm{~L}(\mathrm{n}-1)-\mathrm{q}^{*} \mathrm{~L}(\mathrm{n}-2)
\end{aligned}
$$

Preconditions: n is an int $>=0, \mathrm{p}$ is an

$$
\begin{aligned}
& B: n=1 \\
& C: n=0, n=1 \\
& D: n=0, p=0 \\
& E: n=0, p=0, q=0
\end{aligned}
$$

pass

Divide and Conquer

def prod(tup):

IIIII
Returns the product of the integers in tup. Returns l if empty.

Examples:
prod((12,)) returns 12
prod((7,12,1,2,ฉ)) returns 336 prod(()) returns 1

Precondition: tup is a tuple of ints """
pass

Divide and Conquer

def prod(tup):
IIIII
Returns the product of the integers in tup. Returns l if empty.

Examples:
prod((12,)) returns 12
prod((7,12,1,2,ฉ)) returns 336 prod(()) returns 1

Precondition: tup is a tuple of ints

How Divide? A: Cut in half
 B: Pull off one elt.
 C: Does not matter

 """pass

Divide and Conquer

def prod(tup):
IIIII
Returns the product of the integers in tup. Returns l if empty.

Examples:
prod((12,)) returns 12
prod((7,12,1,2,2)) returns 336 prod(()) returns 1

Precondition: tup is a tuple of ints

How Combine?
 A: Add left, right
 B: Multiply left, right

C: Does not matter

Divide and Conquer 2

def depunct(s):

IIII
Returns s but with everything that is not a letter removed

Examples:
depunct('Hello') returns 'Hello'
depunct('Hello World!') returns 'HelloWorld'

Parameter: s the string to edit
Precondition s is a string
"""
pass

Divide and Conquer 2

def depunct(s):
"""
Returns s but with everything that is not a letter removed

Examples:
depunct('Hello') returns 'Hello'
depunct('Hello World!') returns 'H

Parameter: s the string to edit
Precondition s is a string

How Divide? A: Cut in half B: Pull off one elt. C: Does not matter

 """pass

Divide and Conquer 2

def depunct(s):
"""
Returns s but with everything that is not a letter removed

Examples:
depunct('Hello') returns 'Hello'
depunct('Hello World!') returns 'H

Parameter: s the string to edit
Precondition s is a string

How Combine?
 A: Add left, right
 B: Add right, left
 C: Does not matter

pass

Divide and Conquer 3

def reverse(s):
IIII
Returns s with its characters in reverse order

Examples:
depunct('Hello') returns 'olleH'
depunct('amma') returns 'amma'

Parameter: s the string to reverse
Precondition s is a string
"""
pass

Divide and Conquer 3

def reverse(s):
IIII
Returns s with its characters in reverse order

Examples:
depunct('Hello') returns 'olleH' depunct('amma') returns 'amma'

Parameter: s the string to reverse Precondition s is a string

How Divide? A: Cut in half B: Pull off one elt. C: Does not matter

 """pass

Divide and Conquer 3

def reverse(s):
IIII
Returns s with its characters in reverse order

Examples:
depunct('Hello') returns 'olleH'
depunct('amma') returns 'amma'

Parameter: s the string to reverse Precondition s is a string

How Combine? A: Add left, right B: Add right, left
 C: Does not matter

pass

Questions?

