Module 30

Searching \& Sorting

Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
"II"
\# Loop variable
$\mathrm{i}=0$
while $\mathrm{i}<\operatorname{len}(\mathrm{b})$ and $\mathrm{b}[\mathrm{i}]$!= v : $\mathrm{i}=\mathrm{i}+\mathrm{l}$
if $\mathrm{i}==\operatorname{len}(\mathrm{b})$: \# not found
return -1
return i

How many entries do

 we have to look at?
Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
|| || ||
\# Loop variable
$\mathrm{i}=0$
while $\mathrm{i}<\operatorname{len}(\mathrm{b})$ and $\mathrm{b}[\mathrm{i}]$!= v : $\mathrm{i}=\mathrm{i}+\mathrm{l}$
if $\mathrm{i}==\operatorname{len}(\mathrm{b})$: \# not found return -1
return i

How many entries do we have to look at?

All of them!

Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
|| || ||
\# Loop variable
$\mathrm{i}=\operatorname{len}(\mathrm{b})-1$
while i >= 0 and $\mathrm{b}[\mathrm{i}]$!= v :
$\mathrm{i}=\mathrm{i}-\mathrm{l}$
\# Equals -1 if not found return i

How many entries do we have to look at?

All of them!

Is There a Better Way?

Is There a Better Way?

Higher!

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right
- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right

Lower!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right

Higher!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right

Correct!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

Binary Search

def binary_search(v,b):
\# Loop variable
$i=0, j=\operatorname{len}(b)$
while $\mathrm{i}<\mathrm{j}$ and $\mathrm{b}[\mathrm{i}]$!= v :
mid $=(\mathrm{i}+\mathrm{j}) / / 2$
if $\mathrm{b}[$ mid $]<\mathrm{v}$:
$j=$ mid
elif $b[$ mid $]>v$:
$\mathrm{i}=$ mid
else:
return mid
return -1 \# not found

Requires that the

 data is sorted!
But few checks!

Observation About Sorting

- Sorting data can speed up searching
- Sorting takes time, but do it once
- Afterwards, can search many times
- Not just searching. Also speeds up
- Duplicate elimination in data sets
- Data compression
- Physics computations in computer games
- Why it is a major area of computer science

The Sorting Challenge

- Given: A list of numbers
- Goal: Sort those numbers using only
- Iteration (while-loops or for-loops)
- Comparisons (< or >)
- Assignment statements
- Why? For proper analysis.
- Methods/functions come with hidden costs
- Everything above has no hidden costs
" Each comparison or assignment is " 1 step"

This Requires Some Notation

- As the list is sorted...
- Part of the list will be sorted
- Part of the list will not be sorted
- Need a way to refer to portions of the list
- Notation to refer to sorted/unsorted parts
- And have to do it without slicing!
- Slicing makes a copy
- Want to sort original list, not a copy

This Requires Some Notation

- As the list is sorted...
- Part of the list will be sorted

- Need a u But we will be less formal
- Notatio

than in past years!

- And have to do it without slicing!
- Slicing makes a copy
- Want to sort original list, not a copy

Terminology: Range Notation

- m..n is a range containing $n+1-m$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains $2,3,4$.
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

What does $2 . .1$ contain?

Contains $4+1-2=3$ values
Contains $3+1-2=2$ values
Contains $2+1-2=1$ values
A: nothing
B: 2,1
C: 1
D: 2
E: something else

Terminology: Range Notation

- m..n is a range containing $n+1-m$ values
- $2 . .5$ contains 2, 3, 4, 5 .
- $2 . .4$ contains $2,3,4$.
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

What does $2 . .1$ contain?

Contains $5+1-2=4$ values
Contains $4+1-2=3$ values
Contains $3+1-2=2$ values
Contains $2+1-2=1$ values

A: nothing
B: 2,1
C: 1
D: 2
E: something else

Terminology: Range Notation

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains 2,3,4.
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

- The notation m..n, always implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $\mathrm{m}=\mathrm{n}+1$, the range has 0 values

Horizontal Notation

- Want a pictoral way to visualize this sorting
- Represent the list as long rectangle
- We saw this idea in divide-and-conquer

- Do not show individual boxes
- Just dividing lines between regions
$(h+1)-h=1$

- Label dividing lines with indices
- But index is either left or right of dividing line

Horizontal Notation

- Label regions with properties
- Example: Sorted or ???

- b[0..k-l] is sorted
- b[k.n-1] unknown (might be sorted)
- Picture allows us to track progress

Visualizing Sorting

Insertion Sort

$\mathrm{i}=0$

while $\mathrm{i}<\mathrm{n}$:
\# Push b[i] down into its
\# sorted position in b[0.i. $]$
$\mathrm{i}=\mathrm{i}+1$

Remember the restrictions!

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$$
j=i
$$

while j > 0:

$$
\begin{aligned}
& \text { if b[j-1] >b[j]: } \\
& \begin{array}{l}
\quad \operatorname{swap(b,j-1,j)}
\end{array}
\end{aligned}
$$

$\mathrm{j}=\mathrm{j}-\mathrm{l}$
swap shown in the lecture about lists

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$\mathrm{j}=\mathrm{i}$
while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$j=j-1$
swap shown in the lecture about lists

$$
\operatorname{swap}(b, j-1, j)
$$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$$
\begin{aligned}
& \mathrm{j}=\mathrm{i} \\
& \text { while } \mathrm{j}>0 \text { : } \\
& \begin{array}{|ll}
\text { if } b[j-1]>b[j]: & \text { swap shown in the } \\
\text { lecture about lists } \\
\\
\text { swap }=j-j-1, j)
\end{array}
\end{aligned}
$$

| 0 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 6 | 5 | 6 | 7 |

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):
$\mathrm{j}=\mathrm{i}$
while j > 0:
if $\mathrm{b}[\mathrm{j}-1]>\mathrm{b}[\mathrm{j}]:$
swap(b,j-1,j)
$j=j-1$
swap shown in the lecture about lists

| 0 | | | | i | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 4 | 5 | 6 | 6 | 7 |

The Importance of Helper Functions

$$
i=0
$$

while i < n : push_down(b,i)
i = i+l
def push_down(b, i):
$j=i$
while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$

Can you understand

$\mathrm{i}=0 \quad$ all this code below?
while i < n :

$$
j=i
$$

while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$$
\text { temp }=b[j]
$$

$$
b[j]=b[j-1]
$$

b[j-1] = temp

$$
j=j-l
$$

$$
\mathrm{i}=\mathrm{i}+1
$$

Measuring Performance

- Performance is a tricky thing to measure
- Different computers run at different speeds
- Memory also has a major effect as well
- Need an independent way to measure
- Measure in terms of "basic steps"
- Example: Searching counted \# of checks
- For sorting, we measure in terms of swaps
- Three assignment statements
- Present in all sorting algorithms

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0.i-1-1]""
$\mathrm{j}=\mathrm{i}$
while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$ swap(b,j-1,j)
j $=\mathrm{j}$-l

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1$: 1 swap
- $\mathrm{i}=2$: 2 swaps
- Pushdown is in a loop
- Called for i in $0 . . n$
- i swaps each time

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2=\left(n^{2}-n\right) / 2$

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0.i-1-1]"""
$\mathrm{j}=\mathrm{i}$
while j > 0:
if $b[j-1]>b[j]:$ swap(b,j-1,j)
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2$: 2 swaps
- Pushdown is in a loop
- Called for i in $0 . . n$
- i swaps each time

Insertion sort is an n^{2} algorithm

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2=\left(n^{2}-n\right) / 2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=\mathbf{1 0}$	$\mathrm{n}=\mathbf{1 0 0}$	$\mathrm{n}=\mathbf{1 0 0 0}$
$\log \mathrm{n}$	0.003 s	0.006 s	0.01 s
n	0.01 s	0.1 s	1 s
$\mathrm{n} \log \mathrm{n}$	0.016 s	0.32 s	4.79 s
n^{2}	0.1 s	10 s	16.7 m
n^{3}	1 s	16.7 m	11.6 d
2^{n}	1 s	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=100$	$\mathrm{n}=1000$
$\log \mathrm{n} \sum$ Binary Search	0.006 s	0.01 s
n Linear Search	0.1 s	1 s
$\mathrm{n} \log \mathrm{n} \quad 0.010 \mathrm{~s}$	0.32 s	4.79 s
$\mathrm{n}^{2} \int$ Insertion Sort	10 s	16.7 m
$\mathrm{n}^{3} \quad 1 \mathrm{~s}$	16.7 m	11.6 d
$2^{\text {n }} \quad 1 \mathrm{~s}$	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=10$	$\mathrm{n}=100$	$\mathrm{n}=1000$
$\log \mathrm{n}$	Major Topic in 2110: Beyond scope of this course		0.01 s
n			1 s
$n \log \mathrm{n}$			4.79 s
n^{2}			16.7 m
n^{3}	1 s	16.7 m	11.6 d
$2^{\text {n }}$	1 s	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Insertion Sort is Not Great

- Typically n^{2} is okay, but not great
- Will perform horribly on large data
- Very bad when performance critical (games)
- We would like to do better than this
- Can we get n swaps (no)?
- How about $n \log n$ (maybe)
- This will require a new algorithm
- Let's return to horizontal notation

A New Algorthm

\square

Goal: b	sorted

	0 In-Progress: \quad sorted, $\leq b[i .]$	$\geq b[0 . . i-1]$

First segment always contains smaller values

Selection Sort

\[

\]

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
\# Find minimum in b[i..]
\# Move it to position i

1						
24466899789						
i n						
24466						
$1 \quad \mathrm{l}$						
24466		9	9	8	8	

Remember the restrictions!

Selection Sort

How fast is this?

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
$j=$ index of min of $b[i . . n-1]$ swap(b,i,j)
$\mathrm{i}=\mathrm{i}+1$

Selection Sort

This is also n^{2} !

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:

$$
\begin{aligned}
& \mathrm{j}=\text { index of } \min \text { of } \mathrm{b}[\mathrm{i} . . \mathrm{n}-1] \\
& \operatorname{swap}(\mathrm{b}, \mathrm{i}, \mathrm{j}) \quad \text { This is } \mathrm{n} \text { steps }
\end{aligned}
$$

What is the Problem

- Both insertion, selection sort are nested loops
- Outer loop over each element to sort
- Inner loop to put next element in place
- Each loop is n steps. $\mathrm{n} \times \mathrm{n}=\mathrm{n}^{2}$
- To do better we must eliminate a loop
- But with what? Recursion!
- But to do this we have to back up a bit
- Need to introduce an intermediate algorithm

The Problem Statement

- Given a list $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
\square

h k Start: b | x | ? |
| :--- | :--- |

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}$] to get this answer

k

In-Progress: b | $<=\mathbf{x}$ | \mathbf{x} | ? | $>=\mathrm{x}$ |
| :--- | :--- | :--- | :--- |

Indices b, h important!
Might partition only part

Partition Algorithm

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
h k Start: $\mathrm{b} \quad \mathrm{x}$?
- Swap elements of $b[h . . k]$ to get this answer

	i i+1			k
Goal: b	$<=\mathbf{x}$	\mathbf{x}	>= x	

- x is called the pivot value
- x is not a program variable
- denotes value initially in b[h]

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$: \# Move to end of block. $\operatorname{swap}(b, i+1, j-1)$ $j=j-1$
else: \# b[i+l] < x $\operatorname{swap}(b, i, i+1)$ $\mathrm{i}=\mathrm{i}+1$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$

$\substack{<=\mathbf{x} \\ \mathrm{h}}$	\mathbf{x}	$?$			$>=\mathbf{x}$			
i	$\mathrm{i}+1$		j	k				
1	2	3	1	5	0	6	3	8

while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
swap(b,i+1,j-1)
$j=j-1$
else: \# b[i+l] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$\substack{<=\mathbf{x} \\ \mathrm{h}}$	\mathbf{x}	$?$			$>=\mathbf{x}$			
i	$\mathrm{i}+1$		j	k				
1	2	3	1	5	0	6	3	8

$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+l] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+1$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$<=\mathbf{x}$	\mathbf{x}	$?$			$>=\mathbf{x}$			
h		i	$\mathrm{i}+1$		j		k	
1	2	3	1	5	0	6	3	8

$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+l] < x
$\operatorname{swap}(b, i, i+1)$
$\mathrm{i}=\mathrm{i}+1$

return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+l] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+1$
return i

Why is this Useful?

- Will use this algorithm to replace inner loop
- The inner loop cost us n swaps every time
- Can this reduce the number of swaps?
- Worst case is k-h swaps
- This is n if partitioning the whole list
- But less if only partitioning part
- Idea: Break up list and partition only part?
- This is Divide-and-Conquer!

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

QuickSort

def quick_sort(b, h, k):
"""Sort the array fragment b[h..k]"""
if $b[h . \mathrm{k}]$ has fewer than 2 elements:
return
$j=\operatorname{partition}(b, h, k)$
\# b[h..j-l] <= b[j] <= b[j+l..k]
\# Sort b[h.j-l] and b[j+l..k]
quick_sort (b, h, j-l)
quick_sort (b, j+l, k)

- Worst Case:
array already sorted
- Or almost sorted
- n^{2} in that case
- Average Case: array is scrambled
- $\mathrm{n} \log \mathrm{n}$ in that case
- Best sorting time!

So Does that Solve It?

- Worst case still seems bad! Still n2
- Only happens in small number of cases
- Just happens that case is common (already sorted)
- Can greatly reduce issue with randomization
- Swap start with random element in list
- Now pivot is random and already sorted unlikely

So Does that Solve It?

- Worst case still seems bad! Still n2
- Only happens in small number of cases
- Just ha
- Can gre Makes it "good enough" for most applications
- Swap
- Now pivot is random and already sorted unlikely

Can We Do Better?

- There is guaranteed $\mathrm{n} \log \mathrm{n}$ sorting algorithm
- Called merge sort (beyond scope of course)
- Used heavily in large databases
- But it has high overhead (slower on small data)
- What does the sort() method use?
- Uses Timsort (invented by Tim Peters in 2002)
- Combination of insertion sort and merge sort
- Insertion on small data, merge sort on large

Can We Do Better?

- There is guaranteed $\mathrm{n} \log \mathrm{n}$ sorting algorithm
- Called merge sort (beyond scope of course)
- Used heavily in large databases
- But it has high overhead (slower on small data)
- What does the sort() method use?
- Uses Timsort (invented by Tim Peters in 2002)
- Combination of insertiop
- Insertion on small data,

Quicksort is 1959!

