
Last Name: First: Netid:

CS 1110 Prelim 1 October 12th, 2017

This 90-minute exam has 6 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

Do not use recursion on this exam. Beyond that, you may use any Python feature that you have
learned in class (if-statements, try-except, lists, for-loops and so on), unless directed otherwise.

Question Points Score

1 2

2 14

3 22

4 20

5 22

6 20

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.

Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Function
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.upper() Returns: A copy of s, all letters converted to upper case.
s.lower() Returns: A copy of s, all letters converted to lower case.
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.

List Functions and Methods

Function
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
x.index(y) Returns: index of the FIRST occurrence of y in x (an error occurs if y

does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y. (an error occurs if y

does not occur in x).

The last three list methods are all procedures. They return the value None.

2. [14 points total] Short Answer Questions.

(a) [3 points] What values are printed out to the screen after the following commands?

>>> a = [1,2,3]
>>> b = a[:]
>>> c = a
>>> c.insert(1,5)
>>> print(a)
>>> print(b)

[1,5,2,3] # The new value of a
[1,2,3] # The copied value of b

Page 2

Last Name: First: Netid:

(b) [3 points] What is a statement? What is an expression? How do they differ?
A statement is a command to do something. Each line in a function definition should be
a statement. An expression represents a value. Python will evaluate an expression as part
of a command, but it is not a command by itself.

(c) [4 points] What is a parameter? What is an argument? How are they related?
A parameter is a variable in the parentheses at the start of a function definition.
An argument is an expression in the parentheses of a function call.
A function call evaluates the arguments and plugs the result into the parameters before
executing the function body.

(d) [4 points] Describe how we write a function specification in this class. We are looking
for you to identify four important parts of the specification (though not every function
specification has all of these parts).
A specification is written as a docstring at the start of the function body.
This docstring starts with a single line summary (which includes the value returned).
This is followed by one or more paragraphs giving more detail about the function.
Each paramater is identified an described in the specification.
Finally, there is a precondition for each parameter, identifying what values it can take.

3. [22 points] Call Frames.

Consider the following function definitions.
1 def magnitude(p):
2 """Returns: dist to origin
3 Precondition: p a list of 2 coords"""
4 x = square(p[0])
5 y = square(p[1])
6 return (x+y) ** 0.5
7

8 def square(x):
9 """Returns: square of x"""

10 return x*x

The function magnitude treats a list like a 2-dimensional point and computes its distance from
the origin. Assume that q = [3.0,4.0] is a global variable referencing a list in heap space, as
shown on the next page. On the next two pages, diagram the evolution of the call

d = magnitude(q)

Diagram the state of the entire call stack for the function magnitude when it starts, for each
line executed, and when the frame is erased. If any other functions are called, you should do
this for them as well (at the appropriate time). This will require a total of nine diagrams, not
including the (pre-call) diagram shown.

You should draw also the state of global space and heap space at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. You are also allowed
to write “unchanged” if no changes were made to either global or heap space.

Page 3

Last Name: First: Netid:

Hint: Pay close attention to the line numbers. They are different than those in the assignment.

Call Frames Global Space Heap Space

q id1
id1

list

0 3.0
1 4.0

4

p id1

magnitude

10

x 3.0
square

id1
list

0 3.0
1 4.0

4

p id1

magnitude

x 3.0
square

4

p id1

magnitude

RETURN 9.0

x 3.0
square

5

p id1

magnitude

x 9.0

RETURN 9.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

q id1

q id1

q id1

q id1

Page 4

Last Name: First: Netid:

Call Frames Global Space Heap Space

10

x 4.0
square

5

p id1

magnitude

x 9.0

x 4.0
square

5

p id1

magnitude

x 9.0

RETURN 16.0

x 4.0
square

6

p id1

magnitude

x 9.0
y 16.0

RETURN 16.0

p id1

magnitude

RETURN

x 9.0
y 16.0 5.0

p id1

magnitude

RETURN

x 9.0
y 16.0 5.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

id1
list

0 3.0
1 4.0

q id1

q id1

q id1

q id1

q id1

d 5.0

Page 5

Last Name: First: Netid:

4. [20 points] String Slicing.

Recall that a Cornell netid is a string with 2 or 3 initials, followed by an arbitrary number of
digits. We not worry about case for netids, so 'wmw2', 'WMW2' and 'Wmw2' are all the same.

Two netids are called twins if they have the same initials, and their numbers only differ by one.
So 'wmw2' and 'wmw3' are twins, as are 'js209' and 'JS210'.

Implement the function below. You may not use loops.

def twinsies(netid1,netid2):
"""Returns: True if netid1 and netid2 are twins, off by 1; False otherwise.

Example: twinsies('wmw2','WmW3') is True (case is ignored when comparing)

Precondition: netid1, netid2 are strings representing net-ids."""
Find the letter part
pos1 = 2
if netid1[pos1].isalpha():

pos1 = 3
pos2 = 2
if netid2[pos2].isalpha():

pos2 = 3

Compare the letter parts
pref1 = netid1[:pos1].lower()
pref2 = netid2[:pos2].lower()
if pref1 != pref2:

return False

Extract the number part
fid1 = int(netid1[pos1:])
fid2 = int(netid2[pos2:])

Compare for twins
return fid1 == fid2+1 or fid1+1 == fid2

Page 6

Last Name: First: Netid:

5. [22 points total] Testing and Debugging.

(a) [10 points] Consider the following function header and specification:

def pairs(s1,s2):
"""Returns: The number of adjacent pairs of s2 inside s1

Example: pairs('aabaa','a') is 2
pairs('eeee','e') is 3

Precondition: s1 is a nonempty string of lower case letters.
Precondition: s2 is a single lower-case letter."""

Do not implement this function. Instead, write down a list of at least five test cases
that you would use to test out this function. By a test case, we just mean an input and
an expected output; you do not need to write an assert_equals statement. For each test
case explain why it is significantly different from the others.

There are many different possible answers to this question. Below are the different solutions
we were thinking of. If you had (at least) five test cases that were close to the ones below,
you got full credit. Otherwise, we checked if your test cases were different enough, and
awarded you 2 points for each test.

Inputs Output Reason
s1='bbb' s2='a' 0 String s2 not in s1
s1='aba' s2='a' 0 String s2 in s1, but no adjacent pairs
s1='aab' s2='a' 1 Single adjacent pair, character appears twice
s1='aaba' s2='a' 1 Single adjacent pair, character appears later
s1='aabaa' s2='a' 2 Multiple, non-overlapping adjacent pairs
s1='aaaa' s2='a' 3 Multiple, overlapping adjacent pairs

(b) [12 points] You worked with the function pigify in lab. This function takes a string and
converts it into Pig Latin according to the following rules:

1. The vowels are 'a', 'e', 'i', 'o', 'u', as well as any 'y' that is not the first letter
of a word. All other letters are consonants.

2. If the English word begins with a vowel, we append 'hay' to the end of the word to
get the Pig Latin equivalent.

3. If the English word starts with 'q', we assume it is followed by 'u' (this is part of
the precondition). We move 'qu' to the end of the word, and append 'ay'.

4. If the English word begins with a consonant, we move all the consonants up to the
first vowel (if any) to the end and add 'ay'.

Page 7

Last Name: First: Netid:

Below are implementations of pigify, its helper first_vowel, as well as a new function,
sentipig. The function sentipig allows us to apply Pig Latin to “sentences”. However,
for simplicity, we assume that the sentences have all lower case letters and no punctuation.
They are really just multiple words separated by spaces.
There are at least four bugs in the code below. These bugs are across all functions
and are not limited to a single function. To help find the bugs, we have added several
print statements throughout the code. The result of running the code with these print
statements shown on the next page. Using this information as a guide, identify and fix the
four bugs on the page after this print-out. You should explain your fixes.
Hint: Pay close attention to the specifications. These versions of the functions are slightly
different from those you worked with in lab.

1 def first_vowel(w):
2 """Returns: position of the first
3 vowel, or len(w) if no vowels.
4
5 Precondition: w is a nonempty string
6 with only lowercase letters"""
7 minpos = len(w) # no vowels found yet
8 vowels = 'aeio'
9

10 for v in vowels:
11 print('Looking for '+v) # Trace
12 pos = w.find(v)
13 print('Pos is '+str(pos)) # Watch
14 if pos != -1 and pos < minpos:
15 minpos = pos
16
17 pos = w.find('y')
18 print('y Pos is '+str(pos)) # Watch
19 if pos != -1 and pos < minpos:
20 minpos = pos
21
22 return minpos
23
24
25 def pigify(w):
26 """Returns: copy of w in Pig Latin
27
28 Precondition: w a nonempty string
29 with only lowercase letters. If w
30 starts with 'q', w[1] == 'u'."""
31 pos = first_vowel(w)
32 if pos == 0: # Starts w/ vowel
33 print('Vowel start') # Trace
34 result = w+'hay'
35 elif w[0] == 'q': # Starts with q
36 print('Q start') # Trace
37 resalt = w[2:]+'quay'
38 else: # Standard case
39 print('Consonant start') # Trace
40 result = w[pos:]+w[:pos]+'ay'
41
42 return result

43
44
45 def sentipig(w):
46 """Returns: Copy of sentence w with all
47 words converted to Pig Latin
48
49 Example: sentipig('barn owl') is
50 'arnbay owlhay'
51
52 Precondition: w a string of lower case
53 words, each separated by a space"""
54 result = '' # Accumulator
55 start = 0 # Start of a word
56
57 for pos in range(len(w)):
58 if w[pos] == ' ':
59 # Watch
60 print('Space at pos '+str(pos))
61 word = w[start:pos]
62 # Watch
63 print('Word is '+repr(word))
64 result += pigify(word)+' '
65 # Watch
66 print('Result is '+repr(result))
67 start = pos
68
69 word = w[start:] # Last word
70 # Watch
71 print('Last word is '+repr(word))
72 result += pigify(word)
73
74 return result
75
76
77 # Remaining lines are blank
78
79
80
81
82
83
84

Page 8

Last Name: First: Netid:

Tests:

> > > sentipig('blue')
Last word is 'blue'
Looking for a
Pos is -1
Looking for e
Pos is 3
Looking for i
Pos is -1
Looking for o
Pos is -1
y Pos is -1
Consonant start
ebluay

> > > sentipig('wierd quirk')
Space at pos 5
Word is 'wierd'
Looking for a
Pos is -1
Looking for e
Pos is 2
Looking for i
Pos is 1
Looking for o
Pos is -1
y Pos is -1
Consonant start
Result is 'ierdway '
Last word is ' quirk'
Looking for a
Pos is -1
Looking for e
Pos is -1
Looking for i
Pos is 3
Looking for o
Pos is -1
y Pos is -1
Consonant start
ierdway irk quay

> > > sentipig('quick')
Last word is 'quick'
Looking for a
Pos is -1
Looking for e
Pos is -1
Looking for i
Pos is 2
Looking for o
Pos is -1
y Pos is -1
Q start
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "pigify.py", line 67, in sentipig

result += pigify(word)
File "pigify.py", line 42, in pigify

return result
UnboundLocalError: local variable 'result'

referenced before assignment

> > > sentipig('yellow owl')
Space at pos 6
Word is 'yellow'
Looking for a
Pos is -1
Looking for e
Pos is 1
Looking for i
Pos is -1
Looking for o
Pos is 4
y Pos is 0
Vowel start
Result is 'yellowhay '
Last word is ' owl'
Looking for a
Pos is -1
Looking for e
Pos is -1
Looking for i
Pos is -1
Looking for o
Pos is 1
y Pos is -1
Consonant start
yellowhay owl ay

Page 9

Last Name: First: Netid:

First Bug:

The bug for the test sentipig('blue') is in first_vowel. We are missing the vowel 'u'. To
fixe this, Line 8 should be

vowels = 'aeiou'

Second Bug:

The bug for the test sentipig('quick') is in pigify. Even though the trace shows that we
have gone to the correct elif, we have misspelled the variable result, causing the crash. To
fix this, Line 37 should be

result = w[2:]+'quay'

Third Bug:

The bug for sentipig('duck quack') is in sentipig. When there are multiple words, we are
accidentally including the space in the later words. To fix this, Line 67 should be

start = pos+1

Fourth Bug:

The bug for sentipig('yellow owl') is in first_vowel. This function is treating the first
'y' as a vowel. To fix this, Line 17 should be

pos = w.find('y',1)

Page 10

Last Name: First: Netid:

6. [20 points] Objects and Functions.

Rectangle objects are very common in computer graphics; they are used to indicate a region of
pixels on your screen. Rectangles have four attributes with the following invariants.

Attribute Meaning Invariant
x position of left edge int value
y position of top edge int value
width distance from left to right edge int value >= 0
height distance from top to bottom edge int value >= 0

The invariants all specify int values because pixel positions are whole numbers. Furthermore,
y-coordinates on the screen get larger downwards; the origin is the top left corner of the screen.

To make a Rectangle object, call the function Rectangle(x,y,w,h) (do not worry about the
module), giving the values for the attributes in order. The constructor enforces the object
invariants, and will cause an error if you violate them. Note that it is perfectly okay to have a
rectangle whose width or height is equal to 0.

Sometimes we want to expand a rectangle to include a point. An expansion is the minimal
rectangle containing both the original rectangle and the point. This expansion has at least two
edges in common with the original rectangle, since we only need to move two edges to the point.

For example, suppose we have a point (x,y) and a rectangle a. The illustration below shows
how we might expand a to get a new rectangle b. In the first picture, the point is inside of the
rectangle, so there is nothing to do. In the other cases, we have to resize two edges to meet
the point (x,y). These are not the only cases (sometimes we only need to resize one of the two
edges), but they are enough to give the idea.

a

b

Point Inside
No Change

(x,y)

a

b

a

b(x,y)

a

b

(x,y)

a

b

(x,y)

(x,y)

Resize Right &
Bottom Edge

Resize Left &
Bottom Edge

Resize Right
& Top Edge

Resize Left
& Top Edge

Using the illustration above, implement the function on the next page.

Hint. When you write your if-statements, only use just one of x or y in each if-statement, not
both. This will make the function a lot simpler and cut down on the number of if-statements.
You are also a lot less likely to miss a case this way.

Page 11

Last Name: First: Netid:

def expand(rect,x,y):
"""Expands this rectangle to include the point (x,y).

This function is a procedure and modifies the object rect.

Precondition: rect is a Rectangle object. x and y are ints."""
Find rectangle edges
left = rect.x
rght = rect.x+width
top = rect.y
bot = rect.y+rect.height

Compare the left/right edges
if x < left:

left = x
elif x > rght:

rght = x

Compare the top/bot edges
if y < top:

top = y
elif y > bot:

bot = y

Convert back to rectangle
rect.x = left
rect.width = rght-left
rect.y = top
rect.height = bot-top

Page 12

