CS 1110

Prelim 2 Review
Spring 2019

Exam Info

4/21/19

Prelim 2 Room Assignments Q Publish % Edit

The score you receive is not a score! It is a room assignment.
These "points" are not calculated in your final grade. (That would be silly.)

If you registered a conflict or an SDS need, you should already have received an email from
Lacy Lucas in response.

1 - Baker Lab 2 219 (smaller room where Professor Bracy holds her post-lecture office hours)

2 - Goldwin Smith Hall = G76 (a ground floor lecture hall that looks like this)

3 - Baker Lab # 200, BALCONY (where CS 1110 lectures take place)
4 - Baker Lab & 200, LOWER LEVEL (where CS 1110 lectures take place)

5 - Goldwin Smith Hall & 132 (a first floor lecture hall that looks like this)

6 - SDS Accommodation, Time & Location will be communicated via email from Lacy Lucas

7 - Conflict Accommodation, Time & Location will be communicated via email from Lacy
Lucas

Prelim 2 Review

What is on the Exam?

* Questions from the following topics:

= [teration and Lists, Dictionaries, Tuples

* Nested lists, nested loops
= Recursion

= Classes & Subclasses
" While loops

4/21/19 Prelim 2 Review

What is on the Exam?

* Questions from the following topics:

" [teration and Lists, Dictionaries, Tuples

e Nested lists, nested loops
= Recursion

= Classes & Subclasses
" While loops

4/21/19 Prelim 2 Review

Iteration - For-loops

* Make sure you always keep in mind what the
function 1s supposed to do

= Are we modifying the sequence directly?

= Do we need to have an accumulator variable?

e Remem|
= |s the |

00p variabl

= [s the |

ber what t

ne loop variable represents

e each element(value)?

00p variabl

e the position(index)?

e Same goes for nested-loops

4/21/19

Prelim 2 Review

Iteration - For-loops

* Two ways to implement the for-loop

for x in list: for x in range(len(list)):

- X represents each - X represents each
value inside the list index inside the list

- Modifying x does - Modifying list[x]
not modify the list modifies the list

4/21/19 Prelim 2 Review 6

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)
We represent polynomials as a list of floats. In other words

[1.5,-R.2,3.1,0,-1.0]is 1.6 - 8.8x + 8.1x**2 + 0x**34 — x**4
We evaluate by substituting in for the value x. For example

evaluate([1.5,-2.8,3.1,0,-1.0], 8) is 1.6-2.2(R)+3.1(4)-1(16) = -6.5
evaluate([R], 4) is 2

Precondition: p is a list (len > 0) of floats, x is a float"""

4/21/19 Prelim 2 Review

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)

Precondition: p is a list (len > 0) of floats, x is a float"""
sum = 0
xval =1
for ¢ in p:
sum = sum + ¢*xval # coefficient * (x**n)
xval = xval * X

return sum

4/21/19 Prelim 2 Review

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)

Precondition: p is a list (len > 0) of floats, x is a float"""

sum = 0 In the first iteration, we add
xval =1 (Ist element * 1) to the
for ¢ in p: sum, and then we change

the xval to xval * x, so that
in the second iteration we
can add (2" element * x)

sum = sum + ¢*xval
xval = xval * X
return sum

4/21/19 Prelim 2 Review

Example with 2D Lists

def max_cols(table):
"""Returns: Row with max value of each column

We assume that table is a 2D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.

Examples:
max_cols([[1,%,3], [8,0,4], [0,5,Q]]) is [%,5,4]
max_cols([[1,2,3]]) is [1,2,3]

Precondition: table is a NONEMPTY 2D list of floats"™"

4/21/19 Prelim 2 Review 10

Example with 2D Lists (Like A6)

def max_cols(table):

"""Returns: Row with max value of each column
Precondition: table is a NONEMPTY 2D list of floats"""
Use the fact that table is not empty

result = table[O][:] # Make a copy, do not modify table.
Loop through rows, then loop through columns

for row in table: [4.5, 6]
for k in range(len(row)):
if row[k] > result[k]: [[4.5. 6] ’
' result(k] = row(k] 13,1, 2],
return result (9,0, 5] |

4/21/19 Prelim 2 Review 11

What is on the Exam?

* Questions from the following topics:

= [teration and Lists, Dictionaries, Tuples

* Nested lists, nested loops
= Recursion

= Classes & Subclasses
" While loops

4/21/19 Prelim 2 Review

12

Recursion

Base case

Recursive case

Ensure the recursive case makes progress
towards the base case

4/21/19 Prelim 2 Review

13

Base Case

Create cases to handle smallest units of data
Ideal base cases depend on what type of data 1s
being handled and what the function must do on
that data

4/21/19 Prelim 2 Review

14

Recursive Case

Divide and conquer: how to divide the input so
that we can call the function recursively on
smaller input

When calling the function recursively, assume
that it works exactly as the specification states it
does -- don’t worry about the specifics of your
implementation here

Use this recursive call to handle the rest of the
data, besides the small unit being handled

4/21/19 Prelim 2 Review 15

Make Progress

Recursive calls must always make some sort of
“progress” towards the base cases

This 1s the only way to ensure the function
terminates properly

Risk having infinite recursion otherwise

Please check the Recursion Session slides on the
Schedule tab of the course website!!!

4/21/19 Prelim 2 Review 16

Recursive Function (Fall 2014)

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

Example: histogram(") returns {},
histogram('abracadabra’) returns {'a"5,'n":2,'e¢":1,'d":1,'r":2}

Precondition: s is a string (possibly empty) of just letters.""

4/21/19 Prelim 2 Review 17

Recursive Function

def histogram(s):

4/21/19

Hint:

"""Return: a histogram (dictionary) of the # of letters in string s.

Precondition: s is a string (possibly empty) of just letters.""

-
* Use divide-and-conquer to break up the string

* Get two dictionaries back when you do
 Pick one and insert the results of the other

\.

~N

Prelim 2 Review

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

18

Recursive Function

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s."""
ifg==" # Small data
’ return {}

We know left is { s[0]: 1 }. No need to compute
right = histogram(s[1:])

if s[0] in right: # Combine the answer
- right[s[0]] = right[s[0]]+1

else:

’ right[s[0]] = 1

return right

4/21/19 Prelim 2 Review 19

What is on the Exam?

* Questions from the following topics:
= [teration and Lists, Dictionaries, Tuples
* Nested lists, nested loops
= Recursion
= Classes & Subclasses

e Defining Classes
e Drawing Class folders

* While loops

4/21/19 Prelim 2 Review

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE

Initializer: Make a Customer with last name n, birth year y, e-mail address e.
E-mail is None by default

Precondition: parameters n, b, e satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE

Return: String representation of customer
If e-mail is a string, format is 'name (email)'
If e-mail is not a string, just returns name

4/21/19 Prelim 2 Review

21

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

def getName(self):
| return self. name Getter

def setName(self,value):
assert value is None or type(value) == str

self. name = value
\[Setter J

4/21/19 Prelim 2 Review

22

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

def getEmail(self):
’ return self, email ﬁ Getter }

def setEmail(self,value):
assert value is None or type(value) == str

self. email = value
\[Setter J

4/21/19 Prelim 2 Review

23

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE
def getBorn(self):
’ return self._born ﬁ Getter }

Immutable.
No Setter!

4/21/19 Prelim 2 Review

24

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

DEFINE INITIALIZER HERE

def __init (self, n, y, e=None):

assert type(y) ==int and (y > 1900 or y ==-1)
self.setName(n) # Setter handles asserts
self.setEmail(e) # Setter handles asserts
self._born=y # No setter

4/21/19 Prelim 2 Review

25

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE
DEFINE INITIALIZER HERE
OVERLOAD STR() OPERATOR HERE

def _ str (self):

else:

if self._email is None: N
| return =" if self._name is None else self._name ﬁ None or str

J

s = '""if gelf. name is None else self. name

return s+'('+self._email+")' ﬁ

If not None, |

always a str

4/21/19 Prelim 2 Review

26

class PrefCustomer(Customer):
"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE

Initializer: Make a new Customer with last name n, birth year y,

e-mail address e, and level |

E-mail is None by default

Level is 'bronze' by default

Precondition: parameters n, b, e, 1 satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE

Return: String representation of customer

Format is customer string (from parent class) +', level'
Use __str__ from Customer in your definition

4/21/19 Prelim 2 Review

27

class PrefCustomer(Customer):
"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE

def getLevel(self):
| return self. level <[Getter J

def setLevel(self,value):
assert type(value) == str
assert (value == 'bronze' or value == 'silver' or value == 'dold")

self. level = value
i Setter J

4/21/19 Prelim 2 Review

28

class PrefCustomer(Customer):
"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE

DEFINE INITIALIZER HERE

def __init__(self, n, y, e=None, I="bronze"):
Customer.__init_ (self,n,y,e)
self.setLevel(l) # Setter handles asserts

OVERLOAD STR() OPERATOR HERE
def __str__ (self):
return Customer.__str__ (self)+', '+self._level

explicit calls uses method
in parent class as helper

4/21/19 Prelim 2 Review

29

Two Example Classes

class CongressMember(object):
"""Instance is legislator in congress
Instance attributes:

_name: Member's name [str]"""

def getName(self):
’ return self. name

def setName(self,value):
assert type(value) == str
’ self._name = value

def __init__ (self,n):
| self.setName(n) # Use the setter

def __str__ (self):
| return 'Honorable '+self.name

class Senator(CongressMember):

"""Instance is legislator in congress

Instance attributes (plus inherited):
_state: Senator's state [str]"""

def getState(self):
return self._state

def setName(self,value):
assert type(value) == str
self._name = 'Senator '+value

def __init_ (self,n,s):

assert type(s) == str and len(s) ==
CongressMember.__init__ (self,n)
self._state =8

def __str__ (self):
return (CongressMember._ str__ (self)+
' of '+gself.state)

4/21/19

Prelim 2 Review 30

‘Execute’ the Following Code

>>> b = CongressMember('Jack')

>>> ¢ = Senator('John', 'NY")
>>>d=¢
>>> d.setName('Clint'")

e Draw two columns:

= Global space
= Heap space

e Draw both the

/

\h

Remember:

Commands outside of

a function definition
appen 1n global spac

~

c

/

4/21/19

Prelim 2 Review

* Variables created
= Object folders created

= (Class folders created

e If an attribute changes

= Mark out the old value

= Write in the new value

31

Global Space Heap Space

id1
b id1 CongressMember

_name | 'Jack'

C id2)
Senator
d id2 _name | 'Sef@orghn' | 'Senator Clint'
_state 'NY'

4/21/19

Prelim 2 Review

32

Global Space Heap Space

Instance attributes id1
b in object folders >~ CongressMember

_name | 'Jack'

2 _N. A

™\ :

Methods and e
class attributes
in class folders

Senator

_name | 'Sef@orghn' | 'Senator Clint'

state NY'

superclass

// Arrow to J

4/21/19 Prelim 2 Review 33

Global Space

Heap Space

b id1

C id2

Ja 1d?)

! Method parameters. \

id1

CongressMember

_name | 'Jack'

id2

Senator

_name | 'Sef@orghn' | 'Senator Clint'

_state 'NY'

4/21/19 Prelim 2 Review

34

Method Overriding

Heap Space

class Senator(CongressMember):

"""Instance is legislator in congress

Instance attributes (plus inherited):
_state: Senator's state [str]"""

def getState(self):
| return self._state

def setName(self,value):

self. name = 'Senator '+value

[‘ assert type(value) == str]

def __init_ (self,n,s):

assert type(s) == str and len(s) ==
Senator.__init__ (self,n)
self._state = s

def _ str_ (self):
return (Senator. str_ (self)+
’ ' of '+gelf.state)

id1

_name | 'Jack'

CongressMember

id2

Senator
_name | 'Seigordchn’
_state 'NY'

'Senator Clint'

__init calls

setter as a helper

4/21/19 Prelim 2 Review

35

What is on the Exam?

* Questions from the following topics:

= [teration and Lists, Dictionaries, Tuples

* Nested lists, nested loops
= Recursion

= Classes & Subclasses
" While loops

* Need to understand what the loop 1s doing

4/21/19 Prelim 2 Review 36

While-loop

* Broader notion of “keep working until done”

* Must explicitly ensure that you are “moving
towards” the end

* You explicitly manage what happens each
iteration

while <condition>:
<statement1l>
<statement2>

4/21/19 Prelim 2 Review

37

While-loop

* Loop through a list of ints and modity the
original list by adding one to each one of item

1dx =0

while 1dx < len(list):
list[1dx] = list[idx] + 1
1dx =1dx + 1

4/21/19 Prelim 2 Review

38

Any More Questions?

4/21/19

Prelim 2 Review

39

