
Which of the following is not true?
A type…
(a) is a set of values & operations on these values
(b) represents something
(c) can be determined by using type() in Python
(d) can be changed by using type() in Python
(e) determines the meaning of an operation

If there are multiple false answers,
pick one!

After Lecture 1: Types & Expressions
Before Lecture 2: Variables & Assignments 1

What does it mean that Python is
dynamically typed?

(a) Variables can hold values of any type
(b) Variables can hold different types at the same

time
(c) Variables can hold different types at different

times
(d) A & B
(e) A & C

After Lecture 2: Variables & Assignments
Before Lecture 3: Functions & Modules 2

If this is what happens
when I type the following
code into python
interactive mode:

3After Lecture 3: Functions & Modules
Before Lecture 4: Functions

C:\> python
>>> x = 1+2
>>> x = 3*x
>>> x
9
>>> print(x)
9
>>>

What gets printed
when I run this script?

C:\> python script.py

script.py
x = 1+2
x = 3*x
x
print(x)
The file called script.py

(a)
9
9

(c)
9

(b)
Error

(d)
No clue

4After Lecture 4: Functions
Before Lecture 5: Strings

(c) a new local variable feet is created in the call frame
(d) global variable feet gets a new value

(a) line 1 generates
an error (b) ??

INCHES_PER_FT = 12

feet = “plural of foot”

…

def get_feet(ht_in_inches):

feet = ht_in_inches // INCHES_PER_FT
return feet

get_feet(68)

1
2

get_feet 1

68ht_in_inches

Global Space

12INCHES_PER_FT

get_feet

“plural of foot”feet

How will the diagram change
after executing line 1?

5After Lecture 5: Strings
Before Lecture 6: Specifications & Testing

def foo(a,b):
x = a
y = b
return x*y+y

1
2

3

The file called fn.py

C:\> python
>>> x = 2
>>> import fn
>>> fn.foo(3,4)
16
>>> x
…

A: 2
B: 3
C: 16
D: None
E: I do not know

What does
Python give

me?

6After Lecture 6: Specifications & Testing
Before Lecture 7: Objects

Which of the following is true?
When testing you should…

(a) test a function exclusively with its most likely
arguments

(b) write just a few tests with arguments that do
not meet the function preconditions

(c) start by testing with inputs that live on the
edges of multiple preconditions

(d) test every possible input you can think of
(e) write a bunch of tests before you even code

up the function you’re writing

7After Lecture 7: Objects
Before Lecture 8: Conditionals

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

def swap(p, q):
1 t = p
2 p = q
3 q = t

swap(p, q)

What is in global p after calling swap?
A: id1
B: id2
C: I don’t know

id1p id2q

Global Space

x 1
y 2
z 3

id1

x 3
y 4
z 5

id2

Heap Space

Point3Point3

8After Lecture 8: Conditionals
Before Lecture 8: Memory in Python

1 # Put max of x, y in z
2 print('before if’)
3 if x > y:
4 print(‘inside if x>y’)
5 z = x
6 print(‘z = ’+str(z))
7 else:
8 print(‘inside else (x<=y)’)
9 z = x
10 print(‘z = ’+str(z))
11 print('after if’)
12 print(“the max of "+str(x)+" and "+str(y)+" is "+str(y))

before if
inside if x>y
z = 3
after if
the max of 3 and -3 is -3

Running the code on the left
produces the output above.

What line has the bug?
A: 5 B: 9 C: 12 D: 9 & 12

E: this code is bug-free!

output to screen

After Lecture 9: Memory in Python
Before Lecture 10: Lists & Sequences 9

Q1: what does the call stack look like at
this point in the execution of the code?

def f3():
print(“f3”)

def f2():
print(“f2”)
f3()
f3()
f3()

def f1():
print(“f1”)
f2()

f1()

f1

f2

f3

A

f3

f3

f1

f2

f3

B

f3

f1

f2

f3

C

f1

f2

D

f1

E

10

Execute the following:

>>> x = [1, 2, 3, 4, 5]
>>> z = x
>>> y = x[1:3]
>>> z[y[0]] = x[0]

What is x[2]?

A: 1
B: 2
C::3
D: ERROR
E: I don’t know

After Lecture 10: Lists & Sequences
Before Lecture 11: Asserts & Error Handling

11After Lecture 11: Asserts & Error Handling
Before Lecture 12: Iteration and For-Loops

1 # error.py
2
3 def function_1(x,y):
4 """ x, y are ints """
5 return function_2(x,y)
6
7 def function_2(x,y):
8 """ x, y are floats """
9 return function_3(x,y)
10
11 def function_3(x,y):
12 """ x, y are nums, y != 0 """
13 return x/y
14
15 function_1(1,0)

Crash produces call stack:
Traceback (most recent call last):

File "error.py", line 15, in <module>
function_1(1,0)

File "error.py", line 5, in function_1
return function_2(x,y)

File "error.py", line 9, in function_2
return function_3(x,y)

File "error.py", line 13, in function_3
return x/y

ZeroDivisionError: division by zero

A: 5 B: 9 C: 13 D: 15 E: multiple

Which line of code is to blame for the
program crash?

12After Lecture 12: Iteration and For-Loops
Before Lecture 13: Nested Lists, Tuples, and Dictionaries

b = [1, 2, 3]
for a in b:

b.append(a)
print b

A: never prints b
B: [1, 2, 3, 1, 2, 3]
C: [1, 2, 3]
D: I do not know

Execute the following:

What gets printed?

13After Lecture 14: Algorithm Design
Before Lecture 15: Recursion

def song():
print("This is the song that never ends.")
print("Yes, it goes on and on my friend.")
print("Some people started singing it, not knowing what it was,")
print("And they'll continue singing it forever just because...")
song()

A: A problem-free recursive function
B: A problematic recursive function
C: A song that will be stuck in my head

for the rest of the day.
D: I do not know

What is this?

14After Lecture 15: Recursion
Before Lecture 16: Recursion 2

A) Recursion is provably equivalent to iteration (for-
loops)

B) Recursion is more powerful than iteration (for-
loops)

C) Some programming problems are easier to solve
with recursion

D) Some programming problems are easier to solve
with iteration (for-loops)

E) Recursion can be more memory intensive than
iteration

What statement is false?

15After Lecture 16: Recursion 2
Before Lecture 17: Classes

A) This code works fine!
B) This code won't work b/c

parent1s and parent2s
keep getting set to 0

C) This code won't work b/c
there is no base case

D) This code won't work b/c
not everyone person p has
2 parents.

E) I don't know.

Which statement is true?
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""

parent1s = 0
if p.parent1 != None:

| parent1s = 1+num_ancestors(p.parent1)

parent2s = 0
if p.parent2 != None:

| parent2s = 1+num_ancestors(p.parent2)

return parent1s+parent2s

16After Lecture 17: Classes
Before Lecture 18: Classes 2

A) An instance attribute lives in Global Space.
B) Instance attributes can be modified, but class

attributes cannot.
C) Class attributes cannot be accessed by class

instances, but instance attributes can be.
D) There can be one copy of a class attribute but

possibly many copies of instance attributes.
E) I don't know.

What is the difference between an instance
attribute and a class attribute?

What gets Printed?

17

C:
22
22
22
23
22

A:
22
22
23
23
23

B:
22
22
23
23
22

D:
22
22
22
23
23

netID
courses

Student

major
n_credit

id6

Student

22max_credit

import cs1110

s1 = cs1110.Student(“jl200", [], "Art")
print(s1.max_credit)
s2 = cs1110.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(cs1110.Student.max_credit)

After Lecture 18: Classes 2
Before Lecture 19: Subclasses & Inheritance

18After Lecture 19: Subclasses & Inheritance
Before Lecture 20: Programming with Subclasses

isinstance and Subclasses
Execute the following:

>>> b = B()
>>> e = E()
>>> x = isinstance(b, F)
>>> y = isinstance(e, D)

A: x is True, Y is True
B: x is False, Y is True
C: x is True, Y is False
D: x is False, Y is False
E: I don’t know

class A():
definition here

class B(A):
definition here
class C(A):
definition here
class D(C):
definition here
class E(D):
definition here
class F(B):
definition here

19After Lecture 20: Programming with Subclasses
Before Lecture 21: While Loops

Executing the following:
bigger_than_x = x + 1

Where can python look for the variable x?
• the current call frame
• the call frame of an earlier (still executing) function that

called the current function
• the global space
• (if this line of code is inside a class method) an instance

attribute
• (if this line of code is inside a class method) a class

attribute

How many correct answers are there?
A: 1 B: 2 C: 3 D: 4 E: 5

20After Lecture 21: While Loops
Before Lecture 22: GUI Applications

A: You need a for loop to do that and it was too soon
in the semester to ask that.
B: You need a while loop to do that and it was too in
the semester to ask that.
C: You need either a for loop or a while loop to do
that and it was too soon in the semester to ask that.
D: You still don't have the tools to do that.
E: I don’t know.

On the hangman question of Prelim 1, why did we
not ask you to replace multiple underscores with
a guessed character in the hidden word?

21After Lecture 22: GUI Applications
Before Lecture 23: Loop Invariants

A: It must be true after every line of add_child
executes.
B: It must be true before and after add_child
executes.
C: If the invariant is ever not true, Python will throw
an error.
D: A & C
E: B & C

Consider a Person class with attributes children (a list of children) and
n_male and n_female with the class invariant: n_male + n_female ==
len(children)
Think about how one would implement the class method
add_child(self, is_male). What is true of this invariant?

What range of s has been processed?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop

set n_pair to number of adjacent equal pairs in s

while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 22

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

k: next integer to process.
What range of s has been processed?

What is the loop condition?

set n_pair to # adjacent equal pairs in s

n_pair = 0
k = 0
INV: n_pair = # adjacent equal pairs in s[0..k]
while XXXXXXXX:

if (s[k] == s[k+1]):
n_pair += 1

k = k + 1
23postcondition: n_pair = # adjacent equal pairs in s[0..len(s)-1]

precondition: s is a string

Compare s[k] to the character after it (s[k+1])

k+1k

A: k-1 < len(s)
B: k < len(s) - 1
C: k < len(s)
D: k < len(s) + 1
E: I don’t know

High Level Approach
-7 5 2 2 8 -3 -9 3-1

24

k j

Case A: inspect s[k]: stays where it is
à just increment k

-7 5 2 2 8 -3 -9 3-1

k

Case B: inspect s[k]: needs to be moved
inspect s[j-1]: stays where it is

à just decrement j

-7 5 2 2 8 -3 -9 3-1

k j

Case C: inspect s[k]: needs to be moved
inspect s[j-1]: needs to be moved

à swap the elements,
increment k, decrement k

j

-7 -9 2 2 8 -3 5 3-1

k j

x Shaded elements
have been processed

A: Case A D: a new Case
B: Case B E: I don’t know
C: Case C

Iterations #1-#3 have been categorized.
What case is iteration #4?

#1

#2

#3

#4

?

What is your favorite Sorting Algorithm?

25

A) Selection Sort
B) Insertion Sort
C) Merge Sort
D) Bubble Sort
E) Quick Sort

After Lecture 26: Sorting
Before Lecture 27: Search

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Answers

26

1) B & D
2) C
3) C
4) C
5) A
6) E
7) A
8) D
9) D
10) A
11) B

12) A
13) B
14) B
15) A
16) D
17) C
18) B
19) B
20) C
21) B
22) C

23) B
24) C
25) ?

