

Life after CS 1110

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Obvious Next Step: CS 2110

CS 2110 Immediately Opens your Options

CS 2800: The Other Important Course

- CS requires a lot of math
 - Analyzing code performance
 - Analyzing data
 - Proving code correctness
- Calculus is "wrong math"
 - Data is rarely "continuous"
 - Limited to specific uses (e.g. spatial data)
- "Grab-bag" course
 - All math needed for CS
 - Includes writing proofs

CS 2110 + CS 2880 = Even More Options

Computer Science Course Numbers

- Programming Languages
- Scientific Computing
- Data Management
- Systems
- Computational Biology
- Graphics and Vision
- Artificial Intelligence
- Theory
- Research

x1xx (e.g. 1110, 2110) x2xx (e.g. 4210) **x3**xx (e.g. 3300, 4320) **x4**xx (e.g. 3410, 4410) **x5**xx (e.g. 5555) **x6**xx (e.g. 4620) **x7**xx (e.g. 4758, 4700) **x8**xx (e.g. 4810, 4820) **x9**xx (e.g. 4999)

Level Area

Computer Science Course Numbers

Programming Languages

• Adv. Language Topics

- Functional languages
- Streaming languages
- Parallel programming

• Language Theory

- New languages/compilers
- Software verification

Software Engineering

- Design patterns
- Architecture principles

Scientific Computing

• Calculus + Computing

- Problems from other science domains
- Process with computer

Applications

- Complex simulations
- Physics (games!)
- Challenge: Performance
 - Programs can run for days!
 - How do we make faster?

Data Management

• Modern Web Apps

- Storing user/session data
- Coordinating users

Databases

- Query languages
- Database optimization
- Organizing your data

Information Retrieval

- Searching
- Data analysis

Systems

• Building BIG software

- Operating systems
- Distributed applications (e.g. online, networked)
- Cloud computing
- Also System Security
 - Though that is spread about
- Senior/masters level classes
 - Bulk of the 5xxx courses
 - But great project courses!

Computation Biology

- No undergrad classes
 - Too much to learn
 - Masters/PhD level
- Undergrad options
 - BTRY 4840: Comp. Genomics
 - BSCB department
- Hoping to improve...

Graphics and Vision

- Not modeling/art!
- Rendering & Animation
 - Illumination/reflection
 - Cloth/hair simulation
 - Water and fluids

Processing Images

- Recognizing shapes
- Assembling 3D models from 2D pictures
- Smart cameras

Artificial Intelligence

- Not sentient computers
- Machine learning
 - Discovering patterns
 - Making predictions

• Natural Language Proc.

- Automatic translation
- Searching text/books
- Voice-control interfaces
- Robotics
 - Autonomous control

Theory

• Analysis of Algorithms

- What is possible?
- What is *feasible*?

Analysis of Structures

- Social network theory
- Complex data structures
- Cryptography
 - Theory side of security
- Perhaps the most famous group in the department

What About Games?

- CS 3152, Spring only
 - Prereq: CS 2110
 - But CS 3110 a big help
- Build game from scratch
 - Want it to be innovative
 - You own the IP
- Interdisciplinary teams
 - 5 to 6 people on a team
 - With artists/designers
- Final: public showcase

Games and the Designer Track

- Coding not your thing?
- INFO 3152 (co-meets)
 - Artists/designer track
 - No formal training needed
 - Submit me a portfolio
- Recommend: INFO 2450
 - Start of the HCI sequence
 - How design effects the user experience
 - Fall course; no prereqs

CS Undergraduate Prerequisite Structure

3110: Data Structures and Functional Programming 3152: Introduction to Computer Game Architecture 3220: Introduction to Scientific Computation 3410: Computer System Organization and Programming 3420: Embedded Systems (prereg: ENGRD 2300, not shown) 4110: Programming Languages and Logics 4120: Introduction to Compilers 4152: Advanced Topics in Computer Game Architecture 4154: Analytics-driven Game Design 4160: Formal Verification 4220: Numerical Analysis: Linear and Nonlinear Problems 4320: Introduction to Database Systems 4410: Operating Systems 4450: Introduction to Computer Networks 4620: Introduction to Computer Graphics 4670: Introduction to Computer Vision 4700: Foundations of Artificial Intelligence 4740: Natural Language Processing 4750: Foundations of Robotics 4780: Machine Learning for Intelligent Systems 4786: Machine Learning for Data Science 4787: Principles of Large-Scale Machine Learning 4810: Introduction to Theory of Computing 4820: Introduction to Analysis of Algorithms 4850: Mathematical Foundations for the Information Age

4860: Applied Logic

2110: Object-Oriented Programming and Data Structures

2112: Object-Oriented Design and Data Structures - Honors

2770: Excursions in Computational Sustainability

2800: Discrete Structures

2802: Discrete Structures - Honors

2850: Networks

1110: Introduction to Computing Using Python
1112: Introduction to Computing Using MATLAB
1132: Short Course in MATLAB
1133: Short Course in Python
1380: Data Science for All
2024: C++ Programming

Computer Science not your

- Try one of our neighbors!
- Information Science
- Statistics

- Operations Research & Information Engineering
- Electrical and Computer Engineering
 - ECE 2400 is a good next step

InfoSci Classes you could have already taken

InfoSci Classes you can take after some CS

It's been a great semester! See you at the Final Exam!