
Lecture 27:
Searching

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2019sp

Today’s Plan of Attack

• Linear Search
• Binary Search
• Optional Binary Search Appendix

2

Linear Search Definition

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to make this post-condition true:

post: 1. v is not in b[h.. i-1]
2. i = k OR v = b[i]

3

?
h k

PRE: b

v not here v ?
h i k

POST: b v not here
h k=i

bOR

Linear Search: What’s the Invariant?

Store an integer in i to make this post-condition true:

4
v not here v ?

h i k
POST: b v not here

h k=i
bOR

v not here ?
h i k

INV: b

?
h k

PRE: b

Implementing Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in b[h..k-1]"""
Store in i index of the first v in b[h..k-1]
i = h

invariant: v is not in b[0..i-1]
while i < k and b[i] != v:

i = i + 1

post: b[i] == v OR
v is not in b[h..i-1] and i >= k
return i if i < k else -1

5

?
h k

b

Analyzing Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in b[h..k-1]"""
Store in i index of the first v in b[h..k-1]
i = h

invariant: v is not in b[0..i-1]
while i < k and b[i] != v:

i = i + 1

post: b[i] == v OR
v is not in b[h..i-1] and i >= k
return i if i < k else -1

Analyzing the Loop
1. Does the initialization make inv true?

2. Is post true when inv is true and
condition is false?

3. Does the repetend make progress?

4. Does the repetend keep the invariant
inv true?

6

?
h k

b

How Fast is Linear Search?

No surprise: it's Linear!
(requires n steps to search though n elements)
What does linear time mean?

What if our list were sorted?
Then we could do Binary Search 7

A: if you double the size of the list to 2n, it takes the
original amount of time (~ n steps) to search for v
B: if you double the size of the list to 2n, it takes twice
as long (~ 2n steps) to search for v
C: I don’t know

Binary Search

Looking for the value v in a sorted list?
• Peek at the middle element of the list m

§ v == x ? Done!
§ v > x ? Go check the front half
§ v < x ? Go check the back half

Example:
looking for 15? 15 > 8 à look in the 2nd half of list

8

2 3 5 6 7 12 15 21 33 37 381 8

How Fast is Binary Search?

With each step your list is cut in half.

Runtime: log(n)
n = 16 à 4 steps of searching
What does log(n) time mean?

9

16
8

4

2

1

A: if you double the size of the list to 32, it takes only
the same time (~ 4 steps) to search for v
B: if you double the size of the list to 32, it takes twice
as long (~ 8 steps) to search for v
C: if you double the size of the list to 32, it takes only
slightly longer (~ 5 steps) to search for v
D: I don’t know

Is it worth it to sort the list?

Depends on how often you'll need to search it.
(Do we actually sort your Exams? Sort of…)

This is only the beginning of your foray into
algorithm design and efficiency!

10

CS 1110 MATERIAL STOPS HERE!

CONGRATULATIONS!
(don't leave yet)

11

Appendix: Binary Search Details

You are not responsible for knowing the details
of the following slides but they are a good (but
difficult*) case study of how to develop an
algorithm using loop invariants

* certainly more difficult than anything we would
ask you on the Final Exam

12

Q: Binary Search Examples

13

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9
Example b

h k

§ if v is 3, set i to ___?
§ if v is 4, set i to ___?
§ if v is 5, set i to ___?
§ if v is 8, set i to ___?

v not here v ?
h i k

POST: b v not here
h k=i

bOR

A: 0
B: 3
C: 5
D: 7
E: None of the Above

A: Binary Search Examples

14

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9
Example b

h k

§ if v is 3, set i to 0
§ if v is 4, set i to 5
§ if v is 5, set i to 7
§ if v is 8, set i to 10

v not here v ?
h i k

POST: b v not here
h k=i

bOR

A: 0
B: 3
C: 5
D: 7
E: None of the Above

Binary Search

• Look for v in sorted sequence segment b[h..k].
§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i-1] < v and v <= b[i..k]

?

h k
pre: b

15>= v
h i k

post: b < v

Binary Search: What’s the Invariant?

• Look for v in sorted sequence segment b[h..k].
§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i-1] < v and v <= b[i..k]

?

h k
pre: b

16>= v
h i k

post: b < v

< v ?

h i j k
inv: b >= v

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

17

Implementing Binary Search

def bsearch(b, v):
i = 0
j = len(b)

while i < j:
mid = (i+j)//2
if b[mid] < v:

i = mid+1
else: #b[mid] >= v

j = mid
if i< len(b) and b[i] == v:

return i
else:

return -1

?
h k

pre: b

>= v
h i k

post: b < v

< v ?
h i j k

inv: b >= v

i j

mid

Analyzing Binary Search

def bsearch(b, v):
i = 0
j = len(b)
invariant; b[0..i-1] < v, b[i..j-1] unknown, b[j..] >= v
while i < j:

mid = (i+j)//2
if b[mid] < v:

i = mid+1
else: #b[mid] >= v

j = mid

if i< len(b) and b[i] == v:
return i

else:
return -1

18

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

Binary Search Recursive

def rbsearch(b, v):
""" len(b) > 0 """
return rbsearch_helper(b, v, 0, len(b))

19

def rbsearch_helper(b, v, i, j):
if i >= j:

if i < len(b) and b[i] == v:
return i

else:
return -1

mid = (i + j) // 2

if b[mid] < v:
return rbsearch_helper(b, v, mid + 1, j)

else: # b[mid] >= v
return rbsearch_helper(b, v, i, mid)

Notice that the recursive call
needs more information than the
original call, so we create a helper
function and have it be recursive.

