Lecture 26: Sorting

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Plan of Attack

- Insertion Sort
- Partition
- Quick Sort

Searching is a good motivation for Sorting

Example: 500 CS 1110 Prelims have been scanned Grading Session: "Hey, this scan is hard to read." Task: go through 500 Exams, find the bad scan Do you want this job?
Are the exams in any order? No....
Fine, go through them all.
10 minutes later "Hey, this scan is hard to read..."
Now you really wish they were in order...

Sorting: Arranging in Ascending Order

Insertion Sort

while $\mathrm{k}<\mathrm{n}$:
\# Push b[k] down into its
\# sorted position in b[0..k]
$\mathrm{k}=\mathrm{k}+\mathrm{l}$

POST: $\mathrm{b} \square^{\mathrm{n}}{ }^{\mathrm{n}}$

Insertion Sort: Moving into Position

def push_down(b, k):

```
while k > 0:
    if b[k-l] > b[k]:
    swap(b,k-l,k)
k=k-l
```

$\mathrm{k}=0$
while k < n :

$$
\begin{aligned}
& \text { push_down(b,k) } \\
& k=k+1
\end{aligned}
$$

A: 1
B: 2
C: 3
D: 4
E: 5

Insertion Sort: Moving into Position

def push_down(b, k): while $\mathrm{k}>0$: if $b[k-1]>b[k]$:
swap(b,k-1,k)

$$
\mathrm{k}=\mathrm{k}-\mathrm{l}
$$

$\mathrm{k}=0$
while $\mathrm{k}<\mathrm{n}$:

$$
\begin{aligned}
& \text { push_down(b,k) } \\
& k=k+1
\end{aligned}
$$

3 swaps!

The Importance of Helper Functions

```def push_down(b, k): while k > 0: if b[k-1] > b[k]: swap(b,k-1,k) k = k-l k=0 while k < n: push_down(b,k) k = k+l```	VS	

Also: Is this how you want to sort 500 exams?

## Algorithm Complexity

def push_down(b, k): , while k $>0$ :
if $b[k-1]>b[k]$ :
$\operatorname{swap}(\mathrm{b}, \mathrm{k}-\mathrm{l}, \mathrm{k})$
$\mathrm{k}=\mathrm{k}-1$
$\mathrm{k}=0$
while $\mathrm{k}<\mathrm{n}$ :
push_down(b,k) $\mathrm{k}=\mathrm{k}+\mathrm{l}$

Nested loops multiply the number of operations required. We need to compare b[k] to all elements. $\sim n$ operations

Iterating through a sequence of length $n$ requires $n$ operations: push_down called $n$ times

Approximately how many operations/swaps does this take?

$$
\begin{aligned}
& \mathrm{A}: \sim 1 \\
& \mathrm{C}: \sim \mathrm{n}^{2} \quad \mathrm{~B}: \sim \mathrm{n} \\
& \mathrm{E}: \mathrm{I} \text { don't know }
\end{aligned}
$$

## Clicker Answer:

## Algorithm Complexity

def push_down(b, k): while $\mathrm{k}>0$ :
if $b[k-1]>b[k]$ :
swap(b,k-l,k)
$\mathrm{k}=\mathrm{k}-\mathrm{l}$
$\mathrm{k}=0$
while $\mathrm{k}<\mathrm{n}$ :
push_down(b,k)
$\mathrm{k}=\mathrm{k}+\mathrm{l}$

Approximately how many operations/swaps does this take?

A: $\sim 1$ operation<br>B: ~n operations<br>C: $\sim n^{2}$ operations CORRECT<br>D: $\sim n^{3}$ operations<br>E: I don't know

## Actual Algorithm Complexity

def push_down(b, k):

## while $\mathrm{k}>0$ :

if $b[k-1]>b[k]$ :
swap (b,k-l,k)
$\mathrm{k}=\mathrm{k}-\mathrm{l}$
$\mathrm{k}=0$
while $\mathrm{k}<\mathrm{n}$ :

$$
\begin{aligned}
& \text { push_down(b,k) } \\
& k=k+1
\end{aligned}
$$

Each call to push down must go through a longer and longer series of swaps

Total Swaps:
$0+1+2+\ldots(n-1)$
$=n *(n-1) / 2$

## Plan of Attack

- Insertion Sort
- Partition
- Overview in class
- Details (optional!) are at the end of this lecture
- Quick Sort


## Partition

What if we had an algorithm that could partition a list segment based on some value?
def partition(b, h, k):

Like separating positives from negatives but instead separating by the first value in the segment.
We can use this to make a faster sort!

## Plan of Attack

- Insertion Sort
- Partition
- Quick Sort

Let's partition the exams into 2 piles: A-M \& N-Z.
Now let's partition the A-M pile into A-F \& G-M
Now let's partition the A-F pile into A-C \& D-F eventually the exams will all be sorted!

## Sorting with Partitions



- Idea: Pick a pivot element $\mathbf{x}$
- Partition sequence into <= x and $>=\mathrm{x}$


Keep recursing...


## QuickSort

def quick_sort(b, h, k):
"""Sort the array fragment b[h..k]""
if $k<=h$ :
return

h k				
pre: b	x	?		
		i i+1		
post: b	<= x	x		

\# Sort b[h..i-l] and b[i+l..k]
quick_sort (b, h, i-l)
quick_sort (b, i+l, k)

## How Fast is QuickSort?

If you're lucky, each partition will split the list in half. Runtime: $\mathbf{n}$ * $\boldsymbol{\operatorname { l o g } ( \mathbf { n } )}$


If you're not lucky, each partition removes only 1 element from the list. Runtime = $\mathbf{n}$ * $\mathbf{n}$


In practice, you get lucky.
and on and on and on...

## Quicksort in the real world

```
DEFNE JOBINTERMEWQUICKSORT(IST):
 OK SO YOU CHOOSE A PNOT
 THEN DIVIDE THE LIST IN HALF
 FOR EACH HALF:
 CHECK TO SEE IF IT'S SORTED
 NO, WAIT, ITDOESN'T MATTER
 COMPARE EACH ELEMENT TO THE PIVOT
 THE BGGER ONES GO IN A NEW LIST
 THE EQUALONES GO INTO, OH
 THE SECOND LIST FROM BEFORE
 HANG ON, LET ME NAME THE USTS
 THIS IS UST A
 THE NEW ONE IS LISTB
 PUTTHE BIG ONES INTO UST B
 NOW TAKE TTE SECOND LIST
 CALL IT LIST, UH, A2
 WHICH ONE WAS THE PIVOT IN?
 SCRATCH ALL THAT
 ITJUST RECURSIVELY CALLS ISELF
 UNTLL BOTH LISTS ARE EMPTY
 RIGHT?
 NOT EMPTY, BUT YOU KNOW WHAT I MEAN
 AMI ALLOWED TO USE THE STANDARD LIBRARIES?
```


## Appendix: Partition Details

You are not responsible for knowing the details of the following slides but they are a good (but difficult*) case study of how to develop an algorithm using loop invariants

* certainly more difficult than anything we would ask you on the Final Exam


## Partition Algorithm

- Given a list segment b[h..k] with some pivot value x in $\mathrm{b}[\mathrm{h}]$ :
pre: b

h	k	
x	$?$	

- Swap elements of b[h..k] and store in i to satisfy postcondition:


Example:


## X

- Called the pivot value
- not a variable
$=$ whatever value is in $b[h]$


## Partition: What's the Invariant?

- Given a list segment $b[h . . k]$ with some pivot value x in $\mathrm{b}[\mathrm{h}]$ : pre: b

h		k	
	x	$?$	

INV: b


- Swap elements of b[h..k] and store in i to satisfy postcondition:



## Partition: What's the Invariant?

- Given a list segment b[h..k] with some pivot value x in $\mathrm{b}[\mathrm{h}]$ :

- Swap elements of b[h..k] and store in i to satisfy postcondition:



## Partition: What's the Invariant?

- Given a list segment $b[h . . k]$ with some pivot value x in $\mathrm{b}[\mathrm{h}]$ : pre: b

h		k	
	x	$?$	



- Swap elements of b[h..k] and store in ito satisfy postcondition:
post: b



## Prartition Algorithm Implementation

pre: $\square$
def partition(b, h, k):

$$
\begin{aligned}
& \mathrm{i}=\mathrm{h} \\
& \mathrm{j}=\mathrm{k}+\mathrm{l} \\
& \mathrm{x}=\mathrm{b}[\mathrm{~h}]
\end{aligned}
$$

INV: b
 if $b[i+1]>=x$ :
\# Move b[i+1] to end of block.
$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \#b[i+l] < x
swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
post: b

return i

## Prartition Algorithm Implementation

pre:

b | h |  | k |  |
| :---: | :---: | :---: | :---: |
|  | x | $?$ |  |

def partition(b, h, k):
$\mathrm{i}=\mathrm{h}$
$j=k+1$
$\mathrm{x}=\mathrm{b}[\mathrm{h}]$
INV: b

while $\mathrm{i}<\mathrm{j}-\mathrm{l}$ : if $b[i+1]>=x$ :
\# Move to end of block.
$\operatorname{swap}(b, i+1, j-l)$
$j=j-1$
else: \# b[i+1] < x
swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
post: b

return i

