
Lecture 26:
Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2019sp

Plan of Attack

• Insertion Sort
• Partition
• Quick Sort

2

Searching is a good motivation for Sorting

Example: 500 CS 1110 Prelims have been scanned
Grading Session: “Hey, this scan is hard to read.”
Task: go through 500 Exams, find the bad scan

Do you want this job?
Are the exams in any order? No….
Fine, go through them all.

10 minutes later “Hey, this scan is hard to read…”
Now you really wish they were in order…

3

Sorting: Arranging in Ascending Order

4

2 3 K 9 7

3 2 K 9 7

2 3 K 9 7

2 3 9 K7

#1

#3

#4

#5

Insertion
Sort

#2

2 3 7 9 K
#6

3 2 K 9 7

Insertion Sort

? (unknown values)
0 n

PRE: b

sorted
0 n

POST: b

sorted ? (unknown)
0 k n

INV: b

2 4 4 6 6 7 5
0 k

2 4 4 5 6 6 7
0 k

k = 0

while k < n:
Push b[k] down into its
sorted position in b[0..k]
k = k+1

5

Insertion Sort: Moving into Position

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1

k = 0
while k < n:

push_down(b,k)
k = k+1

6

2 4 4 6 6 7 5
0 k

k=6

A: 1
B: 2
C: 3
D: 4
E: 5

How many swaps
will there be?

Insertion Sort: Moving into Position

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1

k = 0
while k < n:

push_down(b,k)
k = k+1

7

2 4 4 6 6 7 5
0 k

2 4 4 6 6 5 7
0 k

2 4 4 6 5 6 7
0 k

2 4 4 5 6 6 7
0 k

k=6

k=5

k=4

k=3

3 swaps!

The Importance of Helper Functions

k = 0
while k < n:

j = k
while j > 0:

if b[j-1] > b[j]:
temp = b[j]
b[j] = b[j-1]
b[j-1] = temp

j = j -1
k = k +1

8

VS

Can you understand
all this code below?

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1

k = 0
while k < n:

push_down(b,k)
k = k+1

Also: Is this how you want to sort 500 exams?

Algorithm Complexity

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1
k = 0
while k < n:

push_down(b,k)
k = k+1

9

Iterating through a sequence of
length n requires n operations:

push_down called n times

Nested loops multiply the
number of operations required.
We need to compare b[k] to all

elements. ~n operations

A: ~ 1 B: ~ n
C: ~ n2 D: ~ n3

E: I don’t know
Approximately how many
operations/swaps does this take?

Clicker Answer:
Algorithm Complexity

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1

k = 0
while k < n:

push_down(b,k)
k = k+1

10

A: ~ 1 operation
B: ~ n operations
C: ~ n2 operations
D: ~ n3 operations
E: I don’t know

Approximately how many
operations/swaps does this take?

CORRECT

Actual Algorithm Complexity

def push_down(b, k):
while k > 0:

if b[k-1] > b[k]:
swap(b,k-1,k)

k = k-1

k = 0
while k < n:

push_down(b,k)
k = k+1

11Insertion sort requires n*n operations
https://www.youtube.com/watch?v=xxcpvCGrCBc

Total Swaps:
0 + 1 + 2 + … (n-1)

= n * (n-1)/2

Each call to push down
must go through a longer
and longer series of swaps

https://www.youtube.com/watch?v=xxcpvCGrCBc

Plan of Attack

• Insertion Sort
• Partition

§ Overview in class
§ Details (optional!) are at the end of this lecture

• Quick Sort

12

Partition

What if we had an algorithm that could partition a list
segment based on some value?

Like separating positives from negatives but instead
separating by the first value in the segment.
We can use this to make a faster sort! 13

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

def partition(b, h, k):
called the pivot value

Plan of Attack

• Insertion Sort
• Partition
• Quick Sort

Let's partition the exams into 2 piles: A-M & N-Z.
Now let's partition the A-M pile into A-F & G-M

Now let's partition the A-F pile into A-C & D-F
eventually the exams will all be sorted!

14

Sorting with Partitions

• Idea: Pick a pivot element x
• Partition sequence into <= x and >= x

15

?
0 n

0 n

b

Sorted!
0 n

b

<= x x >= xb

Now Partition this and this, too

Keep recursing…

x

https://www.youtube.com/watch?v=m1PS8IR6Td0

https://www.youtube.com/watch?v=m1PS8IR6Td0

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if k<=h:

return

i = partition(b, h, k)

INV: b[h..i–1] <= b[i] <= b[i+1..k]

Sort b[h..i–1] and b[i+1..k]

quick_sort (b, h, i–1)

quick_sort (b, i+1, k)

16

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

How Fast is QuickSort?

17

A-Z

N-ZA-M

G-MA-F

If you're lucky, each partition will split the list in half. Runtime: n * log(n)

A-Z

If you're not lucky, each partition removes only 1 element from the list. Runtime = n * n

In practice, you get lucky.

A B-Z

B

C

C-Z

D-Z

D

and on and on and on…

Quicksort in the real world

18

https://xkcd.com/1185/

https://xkcd.com/1185/

Appendix: Partition Details

You are not responsible for knowing the details
of the following slides but they are a good (but
difficult*) case study of how to develop an
algorithm using loop invariants

* certainly more difficult than anything we would
ask you on the Final Exam

19

Partition Algorithm

• Given a list segment b[h..k] with some pivot value x in b[h]:

• Swap elements of b[h..k] and store in i to satisfy postcondition:

Example:

20

pre: b ?
h k
x

post: b <= x >= x
h i i+1 k

x

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

x
§ Called the pivot value
§ not a variable
= whatever value is in b[h]

Partition: What’s the Invariant?

• Given a list segment b[h..k] with some pivot value x in b[h]:

• Swap elements of b[h..k] and store in i to satisfy postcondition:

21

pre: b ?
h k
x

post: b <= x >= x
h i i+1 k

x

INV: b <= x >= x
h i i+1 j k

x ?

Partition: What’s the Invariant?

• Given a list segment b[h..k] with some pivot value x in b[h]:

• Swap elements of b[h..k] and store in i to satisfy postcondition:

22

pre: b ?
h k
x

post: b <= x >= x
h i i+1 k

x

INV: b <= x >= x
h i i+1 j k

x ?

Initially i = h, j = k+1

Partition: What’s the Invariant?

• Given a list segment b[h..k] with some pivot value x in b[h]:

• Swap elements of b[h..k] and store in i to satisfy postcondition:

23

pre: b ?
h k
x

post: b <= x >= x
h i i+1 k

x

INV: b <= x >= x
h i i+1 j k

x ?

Eventually j = i+1

24

Partition Algorithm Implementation

def partition(b, h, k):
i = h
j = k+1
x = b[h]

while i < j-1:
if b[i+1] >= x:

Move b[i+1] to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

pre: b ?
h k
x

INV: b <= x >= x
h i i+1 j k

x ?

post: b <= x >= x
h i i+1 k

x

25

Partition Algorithm Implementation

def partition(b, h, k):
i = h
j = k+1
x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

pre: b ?
h k
x

INV: b <= x >= x
h i i+1 j k

x ?

post: b <= x >= x
h i i+1 k

x

