Lecture 25: Sequence Algorithms

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Box Notation for Sequences

Graphical assertion about sequence b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (values are in ascending order)
2. all of $\mathrm{b}[0 . . \mathrm{k}-1]$ is \leq all of $\mathrm{b}[\mathrm{k}$. .len(b) -1$]$

Pro Tip \#1:

index always goes above a box, never above a line
(just like house numbers go on a house not between the houses)

Q: Indices for Box Notation

Given:

- index \mathbf{h} of the first element of a segment
- index \mathbf{k} of the element that follows that segment,

Questions:

1. How many values are in segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}-\mathrm{l}]$
2. How many values are in $\mathrm{b}[\mathrm{h} . . \mathrm{h}-\mathrm{l}]$?
3. How many values are in $\mathrm{b}[\mathrm{h} . . \mathrm{h}+\mathrm{l}]$?

Pro Tip \#2:

A: 0
B: 1
C: 2
D: $\mathrm{k}-\mathrm{h}$
E: $\mathrm{k}+\mathrm{h}$

Size is "Follower minus First"
Follower: next thing outside the specified range

Clicker Answer: Indices for Box Notation

Given:

- index \mathbf{h} of the first element of a segment
- index \mathbf{k} of the element that follows that segment,

Questions:

1. How many values are in segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}-\mathrm{l}] \mathbf{D}$
2. How many values are in $\mathrm{b}[\mathrm{h} . . \mathrm{h}-\mathrm{l}]$?
3. How many values are in $\mathrm{b}[\mathrm{h} . . \mathrm{h}+\mathrm{l}]$? C

A: 0
B: 1
C: 2
D: $\mathrm{k}-\mathrm{h}$
E: $\mathrm{k}+\mathrm{h}$

count num adjacent equal pairs

Approach \#1: compare $s[k]$ to the character in front of it $(s[k-1])$ \# set n_pair to \# adjacent equal pairs in s
n_pair $=0$
$\mathrm{k}=1$
while $\mathrm{k}<\operatorname{len}(\mathrm{s}):$
if $\mathrm{s}[\mathrm{k}-\mathrm{l}]=\mathrm{s}[\mathrm{k}]$:
n_pair += l
$\mathrm{k}=\mathrm{k}+\mathrm{l}$

count num adjacent equal pairs

Approach \#1: compare $s[k]$ to the character in front of it $(s[k-1])$ \# set n_pair to \# adjacent equal pairs in s

	0	n
re: seq s	? (unknown values)	>= 0, n_pair $=$

n_pair $=0$

while $\mathrm{k}<\operatorname{len}(\mathrm{s})$: pairs in s[0..k-1]
if $\mathrm{s}[\mathrm{k}-\mathrm{l}]==\mathrm{s}[\mathrm{k}]$:
n_pair += 1
$\mathrm{k}=\mathrm{k}+\mathrm{l}$
post: seq s \square
n
n_pair = num adjacent 6 pairs in s[0..n-1]

find the max of a seq

Task: find the maximum of a sequence s

$$
\begin{aligned}
& \mathrm{k}=1 \\
& \mathrm{big}=\mathrm{s}[\mathrm{O}]
\end{aligned}
$$

while k < len(s):
big $=\max (b i g, s[k])$

$$
\mathrm{k}=\mathrm{k}+1
$$

find the max of a seq

Task: find the maximum of a sequence s

while k < len(s):
big $=\max (b i g, s[k])$

$$
\mathrm{k}=\mathrm{k}+1
$$

post: $s{ }^{n} \quad$ bigis the max of this segment $\quad \mathrm{k}=\mathrm{n}$, big = max of $\mathrm{m}[0 . . n-1]$

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "moves from" the precondition to the postcondition
- The invariant is true at the beginning and at the end
- The four loop design questions

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

Invariants: separate + from - in a list

Task: Put negative values before nonnegative ones and return the split index

| 5 | -7 | 2 | 2 | -1 | 8 | -3 | 9 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| -7 | -1 | -3 | 2 | 5 | 8 | 2 | 9 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{k}=3$ | | | | | | | | |

Invariants: separate + from - in a list

Task: Put negative values before nonnegative ones and return the split index

<body goes here>

	k	
post: s	<0	$>=0$

High Level Approach

Body: separate + from - in a list

$\mathrm{k}=0$						
				$\leqslant \mathrm{j}$	n	s[0..k-1] negative
inv:	s	<0	?	$>=0$		s[j..n-l] zero or +
		ile				s[k..j-l] unknown

if $s[k]<0: \#$ kth elem stays where it is $\mathrm{k}=\mathrm{k}+1$
elif $\mathrm{s}[\mathrm{j}-\mathrm{l}]$ >= 0 : \# (j-1)th elem stays where it is

$$
j=j-1
$$

else: \# both elements in the wrong place swap(s, k, j-l)
$\mathrm{k}=\mathrm{k}+\mathrm{l}$
$j=j-1$

