
Lectures 17 & 18:
Classes

(Chapters 15 & 17)
CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2018sp

http://www.cs.cornell.edu/courses/cs1110/2018sp

What got covered when?

Lecture 17
Slides 3-13, 16-19

Lecture 18
Slides 14, 15, 20-42

Appendix
Slides 43-46

2

Recall: Objects as Data in Folders
nums = [2,3,5]
nums[1] = 7
• An object is like a manila folder
• Contains variables

§ called attributes
§ Can change attribute values

(w/ assignment statements)
• Tab identifies it

§ Unique number assigned by Python
§ Fixed for lifetime of the object

• Type listed in the corner 3

id1

0 2
1 3
2 5

list

type

unique
identifier

7

id1nums

Heap Space

Global Space

Classes are user-defined Types

Classes are how we add
new types to Python

Example Classes
• Point3
• Card
• Rect
• Person

4

id2

x 2

y 3

z 5

Point3

class name

Simple Class Definition

class <class-name>():

"""Class specification"""
<method definitions>

5

class Student():
"""Instance is a Cornell student

Instance Attributes:
netID: student's netID [str], 2-3 letters + 1-4 numbers
courses: list of tuples (name [str], n [int])

name is course name, n is num credits
major: declared major [str]
"""

The Class Specification

6

Constructors

• Function to create new instances
§ function name is the class name

§ Created for you automatically

• Calling the constructor:
§ Makes a new object folder

§ Initializes attributes (see next slide)

§ Returns the id of the folder

7

courses = [("CS 1110", 4), ("MATH 1920", 3)]
s = Student("abc123", courses, "Music")

folder
not

drawn

id8

netID 'abc123'
courses id2

Student

major "Music"

Heap Space

id2courses
Global Space

id8s

Special Method: __init__
def __init__(self, netID, courses, major):

"""Initializer: creates a Student

Has netID, courses and a major

netID: [str], 2-3 letters + 1-4 numbers
courses: list of tuples (name [str], n [int])

name is course name, n is number of credits
major: declared major [str]
self.netID = netID
self.courses = courses
self.major = major

this is the call to the constructor, which calls __init__ 8

two
underscores

use self to
assign

attributes

called by the
constructor

s = Student("abc123", courses, "Music")

id8

netID 'abc123'
courses id2

Student

major "Music"

Heap Space

id2courses
Global Space

id8s

Evaluating a Constructor Expression

1. Creates a new object (folder)
of the class Student on the heap
§ Folder is initially empty

2. Executes the method __init__
§ self = folder name = identifier
§ Other arguments passed in order
§ Executes commands in initializer

3. Returns folder name, the identifier

9

s = Student("abc123", courses, "Music")

id8

netID 'abc123'
courses id2

Student

major "Music"

Heap Space

id2courses
Global Space

id8s

We know how to make:

• Class definitions
• Class specifications
• The __init__ function
• Attributes (using self)

10

Which statement is false?

A) The constructor creates the folder
B) A constructor calls the __init__ method
C) The constructor returns the id of the folder
D) __init__ puts attributes in the folder
E) __init__ returns the id of the folder

11

Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Examples:
§ Point3 class: all attributes must be ints
§ RGB class: all attributes must be ints in 0..255

• Purpose of the class specification
(see example on slide 5) 12

Checking Invariants with an Assert
class Student():

"""Instance is a Cornell student """
def __init__(self, netID, courses, major):

"""Initializer: instance with netID, and courses which defaults empty
netID: [str], 2-3 letters + 1-4 numbers
courses: list of tuples (name [str], n [int])

name is course name, n is number of credits
major: declared major [str] """

self.netID = netID
self.courses = couress
self.major = major

13

assert type(netID) == str, "netID should be type str"
assert netID[0].isalpha(), "netID should begin with a letter"
assert netID[-1].isdigit(), "netID should end with an int"
assert type(courses) == list, "courses should be a list"
assert type(major) == str, "major should be type str"

Aside: The Value None

• The major field is a problem.
§ major is a declared major
§ Some students don't have one!

Solution: use value None
§ None: Lack of str
§ Will reassign the field later!

14

netID 'abc123'
courses id2

Student

major None
n_credit 15

id5

Making Arguments Optional
• We can assign default values to __init__ arguments

§ Write as assignments to parameters in definition
§ Parameters with default values are optional

Examples:

s1 = Student(“xy1234”, [], "History") # all parameters given

s1 = Student(“xy1234”, course_list) # netID, courses given, major defaults to None

s1 = Student(“xy1234”, major="Art") # netID, major given, courses defaults to []

15

class Student():
def __init__(self, netID, courses=[], major=None):

self.netID = netID
self.courses = courses
self.major = major
< rest of constructor goes here >

What if…

We want to track and limit the number of credits a
student is taking….

16

id5

netID 'abc123'
courses id2

Student

major "Music"
n_credit 15

max_credit 22

id6

netID 'def456'
courses id3

Student

major "History"
n_credit 14

max_credit 22

id7

netID 'gh7890'
courses id4

Student

major "CS"
n_credit 21

max_credit 22

Anything wrong with this?

Class Attributes

Class Attributes: Variables that belong to the Class
• One variable for the whole Class
• Shared by all object instances

• Access by <Class Name>.<attribute-name>

Why?
• Some variables are relevant to every object instance of a class
• Does not make sense to make them object attributes
• Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
17

Class Attributes for CS1110
class Student():

"""Instance is a Cornell student """
max_credit = 22
def __init__(self, NetID, courses, major):

< specs go here >
< assertions go here >

self.netID = netID
self.courses = couress
self.major = major
self.n_credit = 0
for (course, n) in courses:

self.n_credit = self.n_credit + n # add up all the credits

assert self.n_credit <= Student.max_credit, "over credit limit"
18

Where does max_credit live???

19

Classes Have Folders Too
Object Folders

• Separate for each instance
• Example: 2 Student objects

Class Folders
• Data common to all

instances

• Not just data!
• Everything common to

all instances goes here!

Student
id5s1

id6s2
22max_credit

netID 'abc123'
courses id2

Student

major "Music"
n_credit 15

id5

netID 'def456'
courses id3

Student

major "History"
n_credit 14

id6

Objects can have Methods
Function: call with object as argument
<function-name>(<arguments>)
len(my_list)

Method: function tied to the object
<object-variable>.<function-call>
my_list.count(7)

• Attributes live in object folder
• Class Attributes live in class folder
• Methods live in class folder

20

Student

22max_credit

netID 'abc123'
courses id2

Student

major "Music"
n_credit 15

id5

__init__(self, netID,
courses, major)

Complete Class Definition

class <class-name>():

"""Class specification"""
<assignment statements>

<method definitions>

keyword class
Beginning of a
class definition

Specification
(similar to one
for a function)

to define
class
methods

to define
class variables

21

class Student():
"""Specification goes here.""”
max_credit = 22
def __init__(self, netID, courses, major):

. . . <snip> . . .

Python creates
after reading the
class definition

__init__(self, netID,
courses, major)

Student

22max_credit

Method Definitions
Looks like a function def
§ But indented inside class
§ 1st parameter always self

Example:
s1.enroll("AEM 2400", 4)
§ Go to class folder for s1 (i.e.,

Student) that’s where enroll is
defined

§ Now enroll is called with s1
as its first argument

§ Now enroll knows which
instance of Student it is
working with

class Student():
def __init__(self, netID, courses=[], major=None):

self.netID = netID
self.courses = courses
self.major = major
< rest of init fn goes here >

def enroll(
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append((name, n))
self.n_credit = self.n_credit + n
print("Welcome to "+ name) 22

__init__(self, netID, courses,
major)
enroll(self, new_coures, n)

Student

22max_credit

self, name, n):

More Method Definitions!

class Student():
def __init__(self, netID, courses=[], major=None):

< init fn definition goes here >
def enroll(self, name, n):

< enroll fn definition goes here >
def drop(

"""removes course tuple with name new_course from courses list
updates n_credit accordingly
course_name: name of course to drop [str] """
for name,n in self.courses:

if name == course_name:
self.n_credit = self.n_credit - n
self.courses.remove((name,n))
print("just dropped "+name)
print("currently have "+str(self.n_credit)+" credits")

23

self, course_name):

Data Encapsulation

• Idea: Force the user to only use methods
• Do not allow direct access of attributes

Setter Method
• Used to change an attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> s1.major = "Anthropology"
• Good:

>>> s1.setMajor("Anthropology")

Getter Method
• Used to access an attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> print("major: "+ s1.major)
• Good:

>>> print("major: "+ s1.getMajor())
24

Data Encapsulation
class Student():

def __init__(self, NetID, courses, major):
< specs go here >
< assertion & definition goes here >
self._major = major

def getMajor(self):
"""Returns: major attribute"""
if self._major == None:

return ""
return self._major

def setMajor(self, m):
""" Sets major to m
Pre: m must be a major at Cornell """
could check major requirements
self._major = m

Precondition is same
as attribute invariant.

Naming Convention
The underscore means
“should not access the

attribute directly.”

25

Getter

Setter

Should this be allowed?

courses = [("MATH 1920", 3), ("HADM 2200", 3), ("CS 1110", 4)]
s1 = Student("mep1", courses, "Economics")
s1.n_credit = 10 ß A
s1.n_creidt = 30 ß B

26

A) A should be allowed, but not B
B) B should be allowed, but not A
C) Both should be allowed
D) Neither should be allowed
E) I don't know

Hiding Methods From Access

• Put underscore in front of a
method will make it hidden
§ Will not show up in help()
§ But it is still there…

• Hidden methods
§ Can be used as helpers inside

of the same class
§ But it is bad style to use them

outside of this class

class Student():
max_credit = 22
def __init__(self, NetID, courses, major):

< specs go here >
< assertions go here >
< definition goes here >
self._major = major

def _isMajor(m): **
"""True if m is a major at Cornell"""
return m == "Computer Science"

def setMajor(self, m):
""" Sets major to m
Pre: m must be a major at Cornell """
assert(Student._isMajor(m))
self._major = m 27

Helper
method

HIDDEN

** Pretend CS is the only major at Cornell

We know how to make:

• Class definitions
• Class specifications
• The __init__ function
• Attributes (using self)
• Class attributes
• Class methods

28

Class Gotchas… and how to avoid them

Rules to live by:
1. Refer to Class Attributes using the Class Name

s1 = Student(“xy1234”, [], "History")
print(“max credits = “+str(Student.max_credit))

29

Name Resolution for Objects

• ⟨object⟩.⟨name⟩ means
§ Go the folder for object

§ Find attribute/method name

§ If missing, check class folder

§ If not in either, raise error

s1 = Student(“xy1234”, [], "History")

finds attribute in object folder
print(s1.netID)
finds attribute in class folder
print(s1.max_credit) ß dangerous 30

id5s1

__init__(self, netID, courses,
major)
enroll(self, new_coures, n)

Student

22max_credit

netID xy1234'
courses id2

Student

major "History"
n_credit 15

id5

Accessing vs. Modifying Class Variables

• Recall: you cannot assign to a global variable
from inside a function call

• Similarly: you cannot assign to a class attribute
from “inside” an object variable

s1 = Student(“xy1234”, [], "History")
Student.max_credit = 23 # updates class attribute
s1.max_credit = 24 # creates new object attribute

called max_credit
Better to refer to Class Variables using the Class Name

31

What gets Printed? (Q)

32

import cs1110

s1 = cs1110.Student(“jl200", [], "Art")
print(s1.max_credit)
s1 = cs1110.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(cs1110.Student.max_credit)

C:
22
22
22
23
22

A:
22
22
23
23
23

B:
22
22
23
23
22

D:
22
22
22
23
23

What gets Printed? (A)

33

import cs1110

s1 = cs1110.Student(“jl200", [], "Art")
print(s1.max_credit)
s1 = cs1110.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(cs1110.Student.max_credit)

C:
22
22
22
23
22

A:
22
22
23
23
23

B:
22
22
23
23
22

D:
22
22
22
23
23

CORRECT

Class Gotchas… and how to avoid them

Rules to live by:
1. Refer to Class Attributes using the Class Name

s1 = Student(“xy1234”, [], "History")
print(“max credits = “+str(Student.max_credit))

2. Don’t forget self

34

Don’t forget self, Part 1

35

s1 = Student(“xy1234”, [], "History")
s1.enroll("AEM 2400", 4)

TypeError: enroll() takes 2
positional arguments but 3
were given

<var>.<method_name> always
passes <var> as first argument

class Student():
def __init__(self, netID, courses, major):

self.netID = netID
self.courses = courses
self.major = major
< rest of constructor goes here >

def enroll(self, name, n): # if you forget self
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append((name, n))
self.n_credit = self.n_credit + n
print("Welcome to "+ name)

Don’t forget self, Part 2 (Q)

36

s1 = Student(“xy1234”, [], "History")
s1.enroll("AEM 2400", 4) class Student():

def __init__(self, netID, courses, major):
self.netID = netID
self.courses = courses
self.major = major
< rest of constructor goes here >

def enroll(self, name, n):
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append((name, n))
self.n_credit = self.n_credit + n
print("Welcome to "+ name)

if you forget self à

What happens?
A) Error
B) Nothing, self is not needed
C) creates new local variable n_credit
D) creates new instance variable

n_credit
E) creates new Class attribute n_credit

Don’t forget self, Part 2 (A)

37

s1 = Student(“xy1234”, [], "History")
s1.enroll("AEM 2400", 4)

NameError: global name
‘n_credit' is not defined

class Student():
def __init__(self, netID, courses, major):

self.netID = netID
self.courses = courses
self.major = major
< rest of constructor goes here >

def enroll(self, name, n):
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append((name, n))
self.n_credit = self.n_credit + n
print("Welcome to "+ name)

if you forget self à

What happens?
A) Error
B) Nothing, self is not needed
C) creates new local variable n_credit
D) creates new instance variable

n_credit
E) creates new Class attribute n_credit

init is just one of many Special Methods
Start/end with 2 underscores
• This is standard in Python
• Used in all special methods
• Also for special attributes
__init__ for initializer
__str__ for str()
__eq__ for ==
__lt__ for <, …
For a complete list, see
https://docs.python.org/3/reference/
datamodel.html#basic-customization

class Point2():
"""Instances are points in 2D space"""
…

def __init__(self,x=0,y=0):
"""Initializer: makes new Point2"""
…

def __str__(self):
"""Returns: string with contents"""
return '(‘+str(self.x) + ',’ + str(self.y) + ')'

def __eq__(self, other):
"""Returns: True if both coordinates equal"""
return self.x == other.x and self.y == other.y

38

https://docs.python.org/3/reference/datamodel.html

We know how to make:

• Class definitions
• Class specifications
• The __init__ function
• Attributes (using self)
• Class attributes
• Class methods

39

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, /, …)
§ Point3 (set: x,y,z coordinates; ops: distanceTo, …)
§ Card (set: suit * rank combinations; ops: ==, !=, <)
§ New ones to think about: Person, Worker, Image, Date, etc.

• To define a class, think of a type you want to make

Designing Types

40

Making a Class into a Type
1. What values do you want in the set?

§ What are the attributes? What values can they have?
§ Are these attributes shared between instances (class attributes)

or different for each attribute (instance attributes)?
§ What are the class invariants: things you promise to keep

true after every method call (see n_credit invariant)

2. What operations do you want?
§ This often influences the previous question
§ What are the method specifications: states what the method

does & what it expects (preconditions)
§ Are there any special methods that you will need to provide?

Write your code to make it so! 41

A word about invariants & preconditions

• When implementing methods:
1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

42

Appendix

Sample Classes for you to look over:
• Time
• Rectangle
• Hand (in poker)

43

Planning out a Class
class Time(object):

"""Class to represent times of day.
INSTANCE ATTRIBUTES:

hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: this time is noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

44

Planning out a Class
class Rectangle(object):

"""Class to represent rectangular region
INSTANCE ATTRIBUTES:

t: y coordinate of top edge [float]
l: x coordinate of left edge [float]
b: y coordinate of bottom edge [float]
r: x coordinate of right edge [float]

For all Rectangles, l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

45

Planning out a Class
class Hand(object):

"""Instances represent a hand in cards.
INSTANCE ATTRIBUTES:

cards: cards in the hand [list of card]
This list is sorted according to the
ordering defined by the Card class."""

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards"""

def isFullHouse(self):
"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

46

