
Lecture 15:
Recursion

(Sections 5.8-5.10)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2018sp

Recursion

Recursive Function:
A function that calls itself

(see also Recursive Function)

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,

and simpler… until it looks like the simple case)

2

3

Russian Dolls!

4

What is the simple case
that can be solved easily?

A: The case where the doll has a seam
and another doll inside of it.
B: The case where the doll has no
seam and no doll inside of it.
C: A & B are both simple
D: I do not know

5

Russian Dolls!

import russian
d1 = russian.Doll("Dmitry", None)
d2 = russian.Doll("Catherine", d1)

id1
name
hasSeam

"Dmitry"

False

None

Doll

innerDoll

id1d1

Heap Space Global Space

id2
name
hasSeam

"Catherine"

True

id1

Doll

innerDoll

id2d2"Dmitry"

"Catherine"

def open_doll(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

inner = d.innerDoll
open_doll(inner)

else:
print("That's it!")

idx
name
hasSeam

Doll

innerDoll

Examples

• Russian Dolls
• Blast Off!
• Towers of Hanoi

7

blast_off(5) # must be a positive int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!

8

Blast Off!

blast_off(5) # must be a positive int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!

9

Blast Off!

What is the simple case
that can be solved easily?

A: negative n
B: positive n
C: n == 0
D: n == 1
E: I do not know.

def blast_off(n):
"""Input: a positive int
Counts down from n to Blast-Off!
"""
if (n == 0):

print("BLAST OFF!")
else:

print(n)
blast_off(n-1)

10

Blast Off!

Tower of Hanoi

• Three towers: left, middle, and right
• n disks of unique sizes on left
• Goal: move all disks from left to right
• Cannot put a larger disk on top of a smaller disk

11

4

left middle right

3
2
1

1 Disc: Easy!

1. Move from left to right

12

1

left middle right

Solving for 1 tower is easy! That's the simple case!

2 Discs: Step 1

1. Move from left to middle

13

left middle right
2
1

Thought: If I could get Disk 1 off of Disk 2,
I could move Disk 2 to where it's supposed
to go…. Moving 1 disk is easy!

2 Discs: Step 2

14

left middle right
2 1

1. Move from left to middle
2. Move from left to right

Thought: Now that Disk 1 is gone, I can
move Disk 2 to where it's supposed to
go.

2 Discs: Step 3 (final)

15

left middle right
21

1. Move from left to middle
2. Move from left to right
3. Move from middle to right

Thought: Now that Disk 2, is where it's
supposed to be, all I have to do is move
Disk 1. Moving 1 disk is easy!

3 Discs!

16

left middle right
3
2
1

Thought: If I could get Disks 1& 2 off of
Disk 3, I could move Disk 3 to where it's
supposed to go…. And I know how to
move 2 Disks from the previous slide!

3 Discs: Moving Disks 1&2 off of Disk 3 (1)

1. Move from left to right

17

left middle right
3
2
1

1. Move from left to right
2. Move from left to middle

18

left middle right
3
2

1

3 Discs: Moving Disks 1&2 off of Disk 3 (2)

3 Discs: Moving Disks 1&2 off of Disk 3 (3)

1. Move from left to right
2. Move from left to middle
3. Move from right to middle

19

left middle right
3 2 1

3 Discs: Move Disk 3 to the Goal

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right

20

left middle right
3 2

1

3 Discs: Moving Disks 1&2 to the Goal (1)

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left

21

left middle right
32

1

3 Discs: Moving Disks 1&2 to the Goal (2)

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right

22

left middle right
321

3 Discs: Moving Disks 1&2 to the Goal (3)

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
7. Move from left to right

23

left middle right
3
2

1

4

4 Discs: Oh, boy...

24

left middle right

3
2
1

Thought: If I could get
Disks 1&2&3 off of Disk
4, I could move Disk 4 to
where it's supposed to
go…. And I know how to
move 3 Disks from the
previous slide!

Rely on the solution for the simpler case

25

4
3
2
1

4 3
2
1

43
2
1

4
3
2
1

1

2 3

Hanoi(3,LàM)
(uncover the big one)

move the big one Hanoi(3,MàR)
(cover the big one)

Hanoi(4,LàR)

=

26

solve_hanoi(n, start, goal, temp)

if n == 1:
print("move from "+start+" to "+goal)

else:
need to move top n-1 disks from start to temp so that I can move
the bottom disk to goal… luckily, I have a function that does that!
solve_hanoi(n-1, start, temp, goal)
move the bottom disk from start to goal
print(“move from ”+ start +“ to ”+ goal)
now put everything back on the last disk at goal
solve_hanoi(n-1, temp, goal, start)

"""Prints instructions for how to move n disks (sorted small to
large, going down) from the start peg to the goal peg, using the
temp peg if needed. """

1

2

3

Divide and Conquer

Goal: Solve really big problem P
Idea: Split into simpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task
3. Decide how to combine your work

27

Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
• We just want you to understand the technique

28

