
Lecture 11: 
Asserts & Error Handling

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2018sp


Postal Function (v1)

>>> import postal_v1
>>> postal_v1.print_mailing_label(100, "Main Street", "Ithaca", "NY", "14850")
Ship to:
100 Main Street
Ithaca, NY  14850
>>>

def print_mailing_label(num, st, city, state, zip):
"""
prints out address in standard mailing format
"""
print("Ship to:")
print(str(num) + " " + st)
print(city+", "+state+" "+zip)

postal_v1.py

Fine as long as 
nothing goes 
wrong….



Postal Function (v1) with Error

>>> postal_v1.print_mailing_label(100, "Main Street", "Ithaca", "NY", 14850)
Ship to:
100 Main Street
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "11-asserts_errors/postal_v1.py", line 14, in print_mailing_label

print(city+", "+state+"  "+zip)
TypeError: must be str, not int

def print_mailing_label(num, st, city, state, zip):
"""
prints out address in standard mailing format
"""
print("Ship to:")
print(str(num) + " " + st)
print(city+", "+state+" "+zip)

postal_v1.py



Where is the errror?

>>> postal_v1.print_mailing_label(100, "Main Street", "Ithaca", "NY", 14850)
Ship to:
100 Main Street
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "11-asserts_errors/postal_v1.py", line 14, in print_mailing_label

print(city+", "+state+"  "+zip)
TypeError: must be str, not int

def print_mailing_label(num, st, city, state, zip):
"""
prints out address in standard mailing format
"""
print("Ship to:")
print(str(num) + " " + st)
print(city+", "+state+" "+zip)

postal_v1.py

A: the function call 
B: the concatenation      
C: the specification
D: A & B
E: A & B & C



Postal Function (v2)

>>> postal_v2.print_mailing_label(100, "Main Street", "Ithaca", "NY", 14850)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "11-asserts_errors/postal_v2.py", line 21, in print_mailing_label

print(city+", "+state+"  "+zip)
TypeError: must be str, not int

def print_mailing_label(num, st, city, state, zip):
"""
prints out address in standard mailing format
Preconditions                                                                                                     
num: an integer with 4 or fewer digits                                                                            
st: str representing the street name                                                                              
city: str the city name                                                                                           
state: a 2-digit all-caps str representing the state                                                              
zip: a 5 digit string 
"""
print(str(num) + " " + st)
print(city+", "+state+" "+zip) postal_v2.py

A: the function call 
B: the concatenation      
C: the specification
D: A & B
E: A & B & C

Can we be 
more helpful?



Assert Statements

• A way to force an error
§ Why would you do this?

• Enforce preconditions!
§ Put precondition as assert.
§ If violate precondition, the program crashes

• Provided code in A3 uses asserts heavily
• Will do yourself in A4

6

assert <boolean>  # Creates error if <boolean> false
assert <boolean>, <string> # As above, but displays <String>



Postal Function (v3)

>>> postal_v3.print_mailing_label(100, "Main Street", "Ithaca", "NY", 14850)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "11-asserts_errors/postal_v3.py", line 24, in print_mailing_label

assert type(zip) == str, "zip code must be a str"
AssertionError: zip code must be a str

def print_mailing_label(num, st, city, state, zip):
assert type(num) == int, "street number must be an int"
assert type(st) == str, "street name must be a str"
assert type(city) == str, "city must be a str"
assert type(state) == str, "state must be a str"
assert len(state) == 2, "state must be 2-digits"
assert type(zip) == str, "zip code must be a str"
print("Ship to:")
print(str(num) + " " + st)
print(city+", "+state+" "+zip) postal_v3.py

ß much better!



Enforcing Preconditions is Tricky!

Want the state abbreviation to be:

• A string

• 2 digits

• An actual US state

à Use a helper function to enforce preconditions!

8



Postal Function (v4)

>>> postal_v4.print_mailing_label(100, "Main Street", "Ithaca", "NX", "14850")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "11-asserts_errors/postal_v4.py", line 25, in print_mailing_label

assert good_state(state), "state is ill-formatted"
AssertionError: state is ill-formatted

def good_state(state):
return type(state) == str and len(state) == 2 and state == "NY" # etc.

def print_mailing_label(num, st, city, state, zip):
. . . 
assert good_state(state), "state is ill-formatted"
print("Ship to:")
print(str(num) + " " + st)
print(city+", "+state+" "+zip) postal_v4.py



What if we want lots of postal functions?

print_mailing_label

print_european_mailing_label

make_911_compliant

Do all of these functions have to check the same 

preconditions?

Redundancy Alert!

10



What we really want is an Address Object
Class Attributes can have invariants
• Limit the attribute values
• Example: zip is a 5-digit str
• Get an error if you violate
• Now when you use an object of 

that class, you can rely on the 
invariants being true

>>> import postal_v5
>>> a1 = postal_v5.Address(100, "Main Street", "Ithaca", "NY", "14850")
>>> postal_v5.print_european_mailing_label(a1)
An:
Main Street 100
14850 Ithaca 11

id1a1 id1

num 100
street "Main St."
city "Ithaca"

Address

state "NY"
zip "14850"

Make an object with bad inputs 
and  you'll get an error.



Postal Function (v5)
def print_european_mailing_label(addr):

"""                                                                                                               
prints out the address in european address format 
Precondition: addr is of type Address                                                                             
"""
print("An:")
print(addr.st+ " " +str(addr.num))
print(addr.zip+" "+addr.city)

postal_v5.py
>>> import postal_v5
>>> a1 = postal_v5.Address(100, "Main Street", "Ithaca", "NY", "14850")
>>> postal_v5. print_european_mailing_label(a1)
Ship to:
Main Street 100
14850 Ithaca

Let's draw this out on 
the board!



Recall: The Call Stack

• Functions are “stacked”
§ Cannot remove one above 

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
• Stack represents memory 

as a “high water mark”
§ Must have enough to keep the 

entire stack in memory
§ Error if cannot hold stack

13

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6

calls

calls

calls

calls



Errors and the Call Stack

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

function_1(1,0)

14

calls

calls

calls



Errors and the Call Stack

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

function_1(1,0)

Crash produces the call stack:
Traceback (most recent call last):

File "error.py", line 12, in <module>
function_1(1,0)

File "error.py", line 4, in function_1
return function_2(x,y)

File "error.py", line 7, in function_2
return function_3(x,y)

File "error.py", line 10, in function_3
return x/y # crash here

ZeroDivisionError: division by zero

15
Make sure you can see line numbers in Atom. 

1
2
3
4
5
6
7
8
9
10
11
12



Question: What line has the error?
(assume there are clear preconditions)

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

function_1(1,0)

Crash produces the call stack:
Traceback (most recent call last):

File "error.py", line 12, in <module>
function_1(1,0)

File "error.py", line 4, in function_1
return function_2(x,y)

File "error.py", line 7, in function_2
return function_3(x,y)

File "error.py", line 10, in function_3
return x/y # crash here

ZeroDivisionError: division by zero

16

1
2
3
4
5
6
7
8
9
10
11
12

A: 12 B: 4 C: 7 D: 10 E: 10 & 12
Update: unless you know what the preconditions are, this is not a well-specified question. Sorry!


