
Lecture 7:
Objects

(Chapter 15)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2018sp
http://www.cs.cornell.edu/courses/cs1110/2018sp

Type: set of values & operations on them

2

Type float:
• Values: real numbers
• Ops: +, -, *, /, **
Type int:
• Values: integers
• Ops: +, -, *, //, %, **
Type bool:
• Values: integers
• Ops: not, and, or

Type str:
• Values: string literals
• Double quotes: “abc”
• Single quotes: ‘abc’

• Ops: + (concatenation)

Built-in Types are not “Enough”

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if have a lot of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

3

x 2

y 3

z 5

• Can we stick them
together in a �folder�?

• Motivation for objects

Built-in Types are not “Enough”

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if have a lot of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

4

x 2

y 3

z 5

Objects: Organizing Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ These values can change

• It has an ID that identifies it
§ Unique number assigned by Python

(just like a NetID for a Cornellian)
§ Cannot ever change
§ Has no meaning; only identifies

5

id1

x 2

y 3

z 5

Unique tab
identifier

Classes: user-defined types for Objects

• Values must have a type
§ An object is a value
§ Object type is a class

• Modules provide classes
• Example: shapes.py

§ Defines: Point3, Rectangle
classes

6

id1

x 2

y 3

z 5

Point3

class name

Constructor: Function to make Objects

• How do we create objects?
§ Other types have literals
§ No such thing for objects

• Constructor Function:
§ Format: ⟨class name⟩(⟨arguments⟩)
§ Example: Point3(0,0,0)
§ Makes a new object (manila folder)

with a new id
§ Called an instantiated object
§ Returns folder id as value

• Example: p = Point3(0, 0, 0)
§ Creates a Point object
§ Stores object’s id in p 7

id2p

variable
stores id

not object

id2

x 0

y 0

z 0

Point3

instantiated object

Storage in Python

• Global Space
§ What you “start with”
§ Stores global variables
§ Lasts until you quit Python

• Heap Space
§ Where “folders” are stored
§ Have to access indirectly

• Call Frames
§ Parameters
§ Other variables local to function
§ Lasts until function returns

id2p
Global Space

id2
Heap Space

f1

f2

Ca
ll

Fr
am

es

Constructors and Modules

>>> import shapes

9

Need to import module
that has Point class.

Global Space Heap Space

shapes

• This is what’s actually happening
• Python Tutor draws this.

CS 1110 omits module variables & folders
(also omit all the built-in functions)

à makes your diagrams cleaner

shapes
module

Constructors and Modules

>>> import shapes

>>> p = shapes.Point3(0,0,0)

>>> id(p)

10

id2p id2

x 0

y 0

z 0

Point3
Need to import module

that has Point class.

Constructor is function.
Prefix w/ module name.

Shows the id of p

Global Space Heap Space

Accessing Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Format: ⟨variable⟩.⟨attribute⟩
§ Example: p.x
§ Look like module variables

• To evaluate p.x, Python:
1. finds folder with id stored in p
2. returns the value of x in that folder

11

id3

x 1

y 2

z 3

id3p
Point3

Global Space Heap Space

Accessing Attributes Example

• Example:
§ p = shapes.Point3(1, 2, 3)
§ p.x = p.x + 3

12

id3

x 1

y 2

z 3

id3p
Point3

4x

Global Space Heap Space

Object Variables

• Variable stores object id
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object id
§ Example:
p1 = shapes.Point3(0, 0, 0)
p2 = p1
§ Takes contents from p1
§ Puts contents in p2
§ Does not make new folder!

This is the cause of many mistakes in this course
13

id2p1 id2

x 0

y 0

z 0

Point3
id2p2

Global Space Heap Space

Attribute Assignment (Question)

>>> p = shapes.Point3(0,0,0)
>>> q = p
• Execute the assignments:

>>> p.x = 5
>>> q.x = 7

• What is value of p.x?

14

id4p

id4q

A: 5
B: 7
C: id4
D: I don’t know

id4

x 0

y 0

z 0

Point3

Global Space Heap Space

Attribute Assignment (Solution)

>>> p = shapes.Point3(0,0,0)
>>> q = p
• Execute the assignments:

>>> p.x = 5
>>> q.x = 7

• What is value of p.x?

15

id4p

id4q

A: 5
B: 7
C: id4
D: I don’t know

id4

x 0

y 0

z 0

Point3

Global Space Heap Space

CORRECT

Call Frames and Objects (1)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)
>>> incr_x(p)

16

1
incr_x 1

id5q

Call Frame

id5p id5

1
…

Point3

x

Global Space Heap Space

Call Frames and Objects (2)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)
>>> incr_x(p)

17

1
incr_x 1

id5q

Call Frame

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

NONERETURN

Call Frames and Objects (3)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)
>>> incr_x(p)

18

1
incr_x 1

id5q

Call Frame

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

NONERETURN

How Many Folders (Question)

19

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

How Many Folders (Solution)

20

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

2/16/17

Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

What Else? (Question)

21

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?
What else gets drawn?

2/16/17

Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

What Else? (Solution)

22

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?
What else gets drawn?

id1p

id2q

2/16/17

Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space Global Space

Swap (Question)

23

What is in p.x at the end of this code?
A: 1
B: 2
C: 3
D: I don’t know

id1p

id2q

Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

Global Space

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)
def swap_x(p, q):
1 t = p.x
2 p.x = q.x
3 q.x = t
swap_x(p, q)

Swap (Solution)

24

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)
def swap_x(p, q):
1 t = p.x
2 p.x = q.x
3 q.x = t
swap_x(p, q)

What is in p.x at the end of this code?
A: 1
B: 2
C: 3
D: I don’t know

id1p

id2q

Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

Global Space

CORRECT

Global p (Question)

25

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)
def swap(p, q):
1 t = p
2 p = q
3 q = t
swap(p, q)

What is in global p after calling swap?

A: id1
B: id2
C: I don’t know

id1p

id2q

Global Space
Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

Global p (Solution)

26

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)
def swap(p, q):
1 t = p
2 p = q
3 q = t
swap(p, q)

What is in global p after calling swap?

A: id1
B: id2
C: I don’t know

id1p

id2q

Global Space
Point3

x 1

y 2

z 3

id1
Point3

x 3

y 4

z 5

id2

Heap Space

CORRECT

Methods: Functions Tied to Classes

• Method: function tied to object
§ Method call looks like a function

call preceded by a variable name:
⟨variable⟩.⟨method⟩(⟨arguments⟩)

Example:
import shapes
p = shapes.Point3(1,2,3)
p.greet()
“Hi! I am a 3-dimensional point
located at (4,2,3)”

id3

x 5

y 2

z 3

id3p

Point3

27Where else have you seen this??

Example: String Methods

• s1.upper()
§ Returns returns an upper case

version of s1

• s.strip()
§ Returns a copy of s with

white-space removed at ends

28

• s1.index(s2)
§ Returns position of the first

instance of s2 in s1

§ error if s2 is not in s1

• s1.count(s2)
§ Returns number of times s2

appears inside of s1

Built-in Types vs. Classes

Built-in types

• Built-into Python

• Refer to instances as values

• Instantiate with literals

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate w/ constructors

• Must represent with folders

29

Where To From Here?

• First, Understand objects
§ All Python programs use objects
§ Most small programs use objects of classes

that are part of the Python Library

• Eventually, create your own classes:
§ the heart of OO Programming
§ the primary tool for organizing Python programs

• But we need to learn more basics first!
30

