ell.edu/courses/cs1110/2019sp

7

2

¥ http://www.cs.corn

L ecture 7:

Objects
(Chapter 15)

CS 1110
Introduction to Computing Using Python

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]


http://www.cs.cornell.edu/courses/cs1110/2018sp
http://www.cs.cornell.edu/courses/cs1110/2018sp

Type: set of values & operations on them

Type float: Type str:
e Values: real numbers * Values: string literals
e Ops:+,-,*%/,** * Double quotes: “abc”

* Single quotes: ‘abe’

Type int: * Ops: + (concatenation)

* Values: integers
* OpS: +a 7 *a //) O/Oa **
Type bool:

* Values: integers
* Ops:not, and, or



Built-in Types are not “Enough”

Z

 Want a point 1in 3D space A

= We need three variables
(2,3, 5)

" X,Yy,z coordinates

 What 1if have a lot of points? s
= Vars x0, y0, z0 for first point , 0 _
= Vars x1, yl, z1 for next point ’2
X
= This can get really messy y 3
* How about a single variable - 5

that represents a point?



Built-in Types are not “Enough”

 Want a point 1in 3D space e Can we stick them
= We need three variables together in a “folder™ ?
" X,Y,Z coordinates e Motivation for objects

 What 1if have a lot of points?
= Vars x0, y0, z0 for first point

= Vars x1,yl, z1 for next point 5
X
= This can get really messy y 3
* How about a single variable ~ 5

that represents a point?



Objects: Organizing Data in Folders

* An object is like a manila folder

Unique tab
o It contains other variables identifier
* Variables are called attributes C/
= These values can change id1
e It has an ID that 1dentifies 1t ) ,
= Unique number assigned by Python
(Just like a NetID for a Cornellian) y 3
= Cannot ever change z S

= Has no meaning; only identifies



Classes: user-defined types for Objects

class name

« Values must have a type id1
= An objectis a value Point3
= Objecttypeis aclass

- Modules provide classes A 2

- Example: shapes.py y 3
= Defines: Point3, Rectangle Z S

classes



Constructor: Function to make Objects

- How do we create objects?

= Other types have literals P id2

= No such thing for objects

e Constructor Function:
= Format: (class name)({arguments))
= Example: Point3(0,0,0)

= Makes a new object (manila folder)
with a new id

= Called an instantiated object
» Returns folder id as value

. variable
- Example: p =Point3(0, 0, 0) stores id
= Creates a Point object not object

= Storesobject’sidinp

id2
Point3
X 0
y 0
7 0

instantiated object



Storage in Python

- Global Space Global Space
= What you “start with” D [z id2
= Stores global variables
= Lasts until you quit Python

ol fl
v
" Where “folders™ are stored £
= Have to access indirectly [ f2
. Call Frames 3

= Parameters
= Other variables local to function
= [.asts until function returns



Constructors and Modules

>>> import shapes Global Space

Need to import module @is/ hapes
that has Point class. odu

* Thisis what’s actually happening
* Python Tutor draws this.

CS 1110 omits module variables & folders
(also omit all the built-in functions)

- makes your diagrams cleaner



Constructors and Modules

>>> import shapes Global Space

Point3

that has Point class.

[ Need to import module J p | id2 id2

>>> p = shapes.Point3(0,0,0) X 0
Constructor 1s function. y 0
Prefix w/ module name.

Vi 0

>>> id(p)

[ Shows the id of p J

10



Accessing Attributes

o Attributes are variables ~ ©lobal Space

that live inside of objects , | id3 id3

= Can use 1n expressions Point3

= Can assign values to them

: : 1

 Format: (variable).(attribute) .
= Example: p.x y |2
= ook like module variables 7z |3

e To evaluate p.x, Python:
1. finds folder with id stored in p
2. returns the value of X in that folder

11



Accessing Attributes Example

Global Space

 Example:
= p = shapes.Point3(1,2,3) P | 1d3 id3
"DPX=pX+3 Point3
x X 4
y |2

12



Object Variables

e Variable stores object id Global Space

= Reference to the object .
J pl| id2 id2

= Reason for folder analogy

Point3
e Assignment uses object id p2 | id2
= Example: X L
pl = shapes.Point3(0, O, 0) y 0
pe =pl , 0

= Takes contents from pl
= Puts contents 1n p2
= Does not make new folder!

This 1s the cause of many mistakes in this course ;



Attribute Assignment (Question)

>>> p = shapes.Point3(0,0,0) Global Space

S>> q=p P 1d4 id4
e Execute the assignments: q| id4 Foint3
>>>px =5 x |0
>>>qx="1
. y |0
« Whatis value of p.x?
7z |0
A5
B:7
C:id4

D: I don’t know

14




Attribute Assignment (Solution)

>>> p = shapes.Point3(0,0,0) Global Space

>>> Q=] p | id4 id4
* Execute the assignments: g | id4 nomts
>>>p.X =5 x |0
>>>qx="1
. y |0
« Whatis value of p.x?
z |0
A:S
B:7 CORRECT
C: id4

D: I don’t know

15




Call Frames and Objects (1)

* Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

 Example:

def incr_ x(q):
> d
1/ qx=qx+1

>>>p = shapes.Point3(1, g, 3)

>>> iner_x(p)

Global Space

Point3

D ids id5
X
Call Frame
iner x 1
q | id5

16




Call Frames and Objects (2)

|

Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

Example:

def incr_x(q):
- gx=qx+1

>>>p = shapes.Point3(1, g, 3)

>>> iner_x(p)

Global Space

p | ids

Call Frame

idS

Point3

X2

iner x

q | ids

RETURN

NONE

17




Call Frames and Objects (3)

* Objects can be altered 1n a
function call

= Object variables hold ids!

= Folder can be accessed from
global variable or parameter

 Example:

def incr_x(q):
1/ qx=qx+1

>>>p = shapes.Point3(1, g, 3)

ﬁincr_x(p)

Global Space

D

id5 id5

Point3

X 2

Call Frame

iner x

q

ids, -

/é

RE

N

NONE

18




How Many Folders (Question)

-~

\_

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

~

Draw everything that gets created.
How many folders get drawn?

19



How Many Folders (Solution)

4 I
import shapes

p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

\ J
id1 id2
Point3 Point3
X 1 X 3
y |2 y |4
Z 3 715

20



What Else? (Question)

4 I
import shapes

p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets created.
How many folders get drawn?

K y What else gets drawn?
id1 id2
Point3 Point3
x |1 X | 3
y |2 y |4
7|3 715

21



What Else? (Solution)

-~

\_

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

\

Draw everything that gets created.
How many folders get drawn?
y What else gets drawn?

Global Space

p|idl

q|id2

id1

id2
Point3 Point3

22



Swap (Question)

/ import shapes \ What is 1n p.x at the end of this code?
= shapes.Point3(1,2,3) A:l
q shapes.Point3(3,4,5) B:2
C:3
et si/\ra.p_X(p, D; D: I don’t know
1 {=pXx
2 PX=QX
3 QX=%
id1 id2
\\SW&p_X(p, D / Point3 Point3
Global Space < |1 <3
1d1
p|id y |2 y | 4
q id2 Z|3 Z!5




Swap (Solution)

/ import shapes \ What is 1n p.x at the end of this code?
= shapes.Point3(1,2,3) A:l
q shapes.Point3(3,4,5) B:2

C:3 CORRECT

def swap_x(p, @): D: I don’t know

1 {=pXx
2 PX=QX

3 QX=%

id1 id2
\\SW&p_X(p, D / Point3 Point3

Global Space < |1 <3
p|idl v|2 v[a
q id2 Z|3 Z15




Global p (Question)

/ import shapes

def swap(p, Q):
1 t=p
2 P=q
3 g=¢

\\swap@, )

= shapes.Point3(1,2,3)
q shapes.Point3(3,4,5)

/

Global Space
p|idl

q|id2

What 1s in global p after calling swap?

A:idl
B:id2
C: Idon’t know

id1 id2
Point3 Point3
X 1 X 3
y |2 y |4
z|3 Z|S

25



Global p (Solution)

/ import shapes

def swap(p, Q):
1 t=p
2 P=q
3 g=¢

\\swap@, )

= shapes.Point3(1,2,3)
q shapes.Point3(3,4,5)

/

Global Space
p|idl

q|id2

What 1s in global p after calling swap?

A:idl CORRECT
B:id2
C: Idon’t know

id1 id2
Point3 Point3
X 1 X 3
y |2 y |4
z|3 Z|S

26



Methods: Functions Tied to Classes

* Method: function tied to object

= Method call looks like a function
call preceded by a variable name:

(variable) (method)({arguments)) id3

id3

Point3

Example:
import shapes :
p = shapes.Point3(1,2,3) y
p.greet() Z

“Hil I am a 3-dimensional point
located at (4,2,3)”

Where else have you seen this??




Example: String Methods

e s;.upper() * 5,.index(s,)
= Returns returns an upper case = Returns position of the first
version of 8; instance of S, In 8;
= error if 8, 1snot 1n §;
e g.strip()
= Returns a copy of s with e 3;.count(sy)
white-space removed at ends = Returns number of times s,

appears inside of §;

28



Built-in Types vs. Classes

Built-in types

Classes

Built-into Python
Refer to instances as values
Instantiate with literals

Can 1gnore the folders

Provided by modules
Refer to instances as objects
Instantiate w/ constructors

Must represent with folders

29



Where To From Here?

 First, Understand objects
= All Python programs use objects

= Most small programs use objects of classes
that are part of the Python Library

- Eventually, create your own classes:
= the heart of OO0 Programming
= the primary tool for organizing Python programs

« But we need to learn more basics first!

30



