
Lecture 5: Strings
(Sections 8.1, 8.2, 8.4, 8.5,

1st paragraph of 8.9)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2019sp

http://www.cs.cornell.edu/courses/cs1110/2019sp

Today

• More about the str type
§ New ways to use strings

• More examples of functions
§ Functions with strings!

• Learn the difference between print and return

2

Strings are Indexed (Question 1)

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[3:6]?

3

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

Strings are Indexed (Solution 1)

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[3:6]?

4

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

CORRECT

Strings are Indexed (Question 2)

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[:3]?

5

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'all'
B: 'l'
C: 'Hel'
D: Error!
E: I do not know

Strings are Indexed (Solution 2)

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• t = 'Hello all'

• What is t[:3]?

6

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'all'
B: 'l'
C: 'Hel'
D: Error!
E: I do not know

CORRECT

Other Things We Can Do With Strings
Operator in: s1 in s2

• Tests if s1 “a part of”
(or a substring of) s2

• Evaluates to a bool
Examples:
>>> s = 'abracadabra’
>>> ‘a’ in s
True
>>> 'cad' in s
True
>>> 'foo' in s
False

Built-in Function len: len(s)
§ Value is # of chars in s
§ Evaluates to an int

Examples:
>>> s = 'abracadabra’
>>> len(s)
11
>>> len(s[1:5])
4
>>> s[1:len(s)-1]
'bracadabr’
>>>

7

Defining a String Function
Want to write function
middle which returns the
middle 3rd of a string
(length divisible by 3).

How we want it to behave:

>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb' 8

Important Questions:
1. What are the parameters?
2. What is the return value?
3. What goes in the body?

def middle(text):

???
return middle_third

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

9

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
>>> middle('abc')
>>> middle(‘aabbcc’)
>>> middle(‘It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity, it was the season of Light, it was the season of Darkness, it was the
spring of hope, it was the winter of despair, we had everything before us, we had
nothing before us, we were all going direct to Heaven, we were all going direct the
other way…’)

10

middle_third = text[2:4]

middle_third = text[1] Too easy!!

Still too easy!!

Definition of middle
def middle(text):

"""Returns: middle 3rd of text
Param text: a string with
length divisible by 3"""

Get length of text
size = len(text)
Start of middle third
start2 = size//3
End of middle third
start3 = (2*size)//3
Get the substring
middle_third = text[start2:start3]
return middle_third

11

IMPORTANT:
Precondition requires

that arguments to
middle have length

divisible by 3.

If not? Bad things could
happen, and we blame

the user (not the author)
of the function.

Advanced String Features: Method Calls

• Strings have some useful methods
§ Like functions, but “with a string in front”

• Format: <string name>.<method name>(x,y,…)
• Example: upper() returns an upper case version

>>> s = 'Hello World’
>>> s.upper()
'HELLO WORLD’
>>> s
'Hello World’

12

>>> s[1:5].upper()
'ELLO'
>>> ‘scream'.upper()
‘SCREAM'
>>> 'cs1110'.upper()
'CS1110'

Examples of String Methods

• s1.index(s2)
§ Returns position of the first

instance of s2 in s1

§ error if s2 is not in s1

• s1.count(s2)
§ Returns number of times s2

appears inside of s1

• s.strip()
§ Returns a copy of s with

white-space removed at ends

• s = 'abracadabra’

• s.index('a')
• s.index('rac')
• s.count('a')
• s.count('b')
• s.count('x')
• ' a b '.strip()

13See Python Docs for more

0
2
5
2
0

'a b'

a b r a c
0 1 2 3 4

a
5

d
6

a
7

b
8

r
9

a
10

String Extraction, Round 1

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

Find the open parenthesis
start = text.index('(')

Find the close parenthesis
end = text.index(‘)’)

inside = text[start+1:end]
return inside

>>> s = 'One (Two) Three'
>>> firstparens(s)
'Two'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

14

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

15

Think of all the corner cases
What could possibly go wrong?

String Extraction, Round 2

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

Find the open parenthesis
start = text.index('(')

Store part AFTER paren
substr = text[start+1:]

Find the close parenthesis
end = substr.index(')’)

inside = substr[:end]
return inside

>>> s = 'One (Two) Three'
>>> firstparens(s)
'Two'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

16

String Extraction Puzzle

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Param thelist: a list of words with
at least two commas ""”

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion’)
expecting: 'dog’ get: ‘ dog’

>>> second('apple,pear , banana')
expecting: 'pear’ get: ‘pear '

Where is the error?

A: Line 1
B: Line 2
C: Line 3
D: Line 4
E: There is no error

17

1
2
3
4
5

String Extraction Fix

>>> second('cat, dog, mouse, lion’)
expecting: 'dog’ get: ‘ dog’

>>> second('apple,pear , banana')
expecting: 'pear’ get: ‘pear '

result = tail[:end].strip() #better fix!

tail = thelist[start+2:] #possible fix ??
What if there are multiple (or no!) spaces?

18

1
2
3
4
5

def second(thelist):
"""Returns: second word in a list
of words separated by commas, with
any leading or trailing spaces from the
second word removed
Ex: second('A, B, C') => 'B'
Param thelist: a list of words with
at least two commas ""”

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

String: Text as a Value

• String are quoted characters
§ 'abc d' (Python prefers)
§ "abc d" (most languages)

• How to write quotes in quotes?
§ Delineate with “other quote”
§ Example: " ' " or ' " '
§ What if need both " and ' ?

• Solution: escape characters
§ Format: \ + letter
§ Special or invisible chars

19

Char Meaning

\' single quote

\" double quote

\n new line

\t tab

\\ backslash

Type: str

Not All Functions Need a Return

def greet(n):
"""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string"""
print('Hello '+n+'!’)
print(‘How are you?’)

20

Displays these
strings on the

screen

No assignments or return
(returns None)

print vs. return
• Displays a value on screen
• Used primarily for testing
• Not useful for calculations

• Sends a value from a function
call frame back to the caller

• Important for calculations
• Does not display anything

21

def print_plus(n):
print(n+1)

>>> print_plus(2)
3
>>>

def return_plus(n):
return n+1

>>> return_plus(2)
3
>>>

?

unexpected printing courtesy of:
Python Interactive Mode

• executes both statements and expressions
• if expression:

1. evaluates
2. prints value (if one exists)

>>> 2+2
4
>>> return_plus(2)
3
>>>

22

evaluates (performs addition)

prints value (4)

evaluates (makes function call,
gets return value)prints value (3)

>>> return_plus(2)
3
>>>

return_plus 1

return_plus in action

23

def return_plus(n):
return n+1 call frame

n 2

Python Interactive Mode
RETURN 3

1. Evaluates : makes
function call, evaluates to
return value
2. prints value

>>> print_plus(2)
3
>>>

print_plus 1

print_plus in action

24

def print_plus(n):
print(n+1) call frame

n 2

Python Interactive Mode
RETURN NONE

1. Evaluates : makes
function call, evaluates to
return value

2. does not print value
b/c it’s NONE

>>> print_plus(2)
2
3
>>>

print_plus 1

hybrid_plus in action

25

def hybrid_plus(n):
print(n)
return n+1

call frame
n 2

Python Interactive Mode
RETURN 3

1. Evaluates : makes
function call, evaluates to
return value
2. print value

2

See the difference in the Python Tutor

def print_plus(n):
print(n+1)

def return_plus(n):
return n+1

x1 = print_plus(2)
x2 = return_plus(2)
print(x1)
print(x2)

26http://cs1110.cs.cornell.edu/visualizer/#mode=edit

http://cs1110.cs.cornell.edu/visualizer/

Exercise 1

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x

Python Interactive Mode

>>> import module
>>> print(module.x)
…

27

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

Exercise 1, Solution

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x

Python Interactive Mode

>>> import module
>>> print(module.x)
…

28

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

CORRECT

Exercise 2

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x

y = foo(0)

Python Interactive Mode

>>> import module
>>> print(module.y)
…

29

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

Exercise 2, Solution

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x

x = foo(0)

Python Interactive Mode

>>> import module
>>> print(module.x)
…

30

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

CORRECT

Exercise 3

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x
return x+1

y = foo(0)

Python Interactive Mode

>>> import module
>>> module.y
…

31

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

Exercise 3, Solution

Module Text

module.py

def foo(x):
x = 1+2
x = 3*x
return x+1

y = foo(0)

Python Interactive Mode

>>> import module
>>> module.y
…

32

A: 9
B: 10
C: 1
D: None
E: Error

What does Python
give me?

CORRECT

Exercise 4

Function Definition

def foo(a,b):
x = a
y = b
return x*y+y

Function Call

>>> x = 2
>>> foo(3,4)
>>> x
…

33

A: 2
B: 3
C: 16
D: None
E: I do not know

1
2

3

What does Python
give me?

Exercise 4, Solution

Function Definition

def foo(a,b):
x = a
y = b
return x*y+y

Function Call

>>> x = 2
>>> foo(3,4)
>>> x
…

34

A: 2
B: 3
C: 16
D: None
E: I do not know

CORRECT

1
2

3

What does Python
give me?

