Lecture 2:
 Variables \& Assignments
 (Sections 2.1-2.3,2.5)
 $$
\text { CS } 1110
$$

Introduction to Computing Using Python

Cornell CIS
 computing and information science

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Helping you succeed in this class

Canvas. You should have received an email on Tuesday. Check your spam folders. This is how we make announcements.
http://www.cs.cornell.edu/courses/cs1110/2019sp/staff/
Consulting Hours. ACCEL Lab Green Room

- Big block of time multiple people (see staff calendar)
- Good for assignment help

Staff Office Hours.

- Staff: 1 person, 1 hour at a time (see staff calendar)
- Good for conceptual help

My Office Hours. Right next door after class (Baker 219) or by appointment (see staff page under "Office Hours")
Piazza. Online forum to ask/answer questions

From last time: Types

Type: set of values \& operations on them

Type float:

- Values: real numbers
- Ops: +, -, *, /, **

Type int:

- Values: integers
- Ops: +, -, *, //, \%, **

Type bool:

- Values: true, false
- Ops: not, and, or

Type str:

- Values: string literals
- Double quotes: "abc"
- Single quotes: ‘abc’
- Ops: + (concatenation)

Converting from one type to another aka "casting"
<typpe> (<value>)
>>> float(2) 2.0
>>>int(2.6)
2
converts value 2 to type float
converts value 2.6 to type int
...different from:
type(<value>)
>>>type(2) <class 'int'>

What should Python do?

(A) turn 2.6 into the integer 2, then calculate $1 / 2 \rightarrow 0.5$ (B) turn 2.6 into the integer 2 , then calculate $1 / / 2 \rightarrow 0$ (C) turn 1 into the float 1.0, then calculate 1.0/2.6 \rightarrow 0.3846...
(D) Produce a TypeError telling you it cannot do this. (E) Exit Python

Widening Conversion (OK!)

From a narrower type to a wider type (e.g., int \rightarrow float)

Python does automatically if needed:

- Example: 1/2.0 evaluates to a float: 0.5
- Example: True + 1 evaluates to an int: 2
- True converts to 1
- False converts to 0

Note: does not work for str

- Example: $2+$ "ab" produces a TypeError

Narrowing Conversion (OK???)

From a wider type to a narrower type

$$
\text { (e.g., float } \rightarrow \text { int) }
$$

- causes information to be lost
- Python never does this automatically

What about:
>>> l/int(2.6)
0.5

Python casts the 2.6 to 2.0 but / is a float division, so Python casts 1 to 1.0 and 2 to 2.0

Types matter!
You Decide:
-What is the right type for my data?

- When is the right time for conversion (if any)
- Zip Code as an int?
- Grades as an int?
- Lab Grades as a bool?
- Interest level as bool or float?

What are your goals: Accuracy? Clarity? Fairness?

Operator Precedence
What is the difference between:

$$
2^{\star}(1+3)
$$

$$
2^{\star} 1+3
$$

add, then multiply
multiply, then add
Operations performed in a set order - Parentheses make the order explicit What if there are no parentheses?
\rightarrow Operator Precedence: fixed order to
processes operators when no parentheses

Precedence of Python Operators

- Exponentiation: **
- Unary operators: + -
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Comparisons: $<><=>=$
- Equality relations: == !=
- Logical not
- Logical and
- Logical or
- Precedence goes downwards
- Parentheses highest
- Logical ops lowest
- Same line = same precedence
- Read "ties" left to right (except for **)
- Example: $1 / 2 * 3$ is $(1 / 2) * 3$
- Section 2.5 in your text
- See website for more info
- Major portion of Lab 1

Operators and Type Conversions

Evaluate this expression:

Operator Precedence

Exponentiation: **
Unary operators: + -
Binary arithmetic: * / \% Binary arithmetic: + -
Comparisons: < > <= >= Equality relations: == != Logical not
Logical and Logical or

False + 1 + 3.0 / 3
A. 3
B. 3.0
C. 1.3333
D. 2
E. 2.0

Operators and Type Conversions

Evaluate this expression:

Operator Precedence

Exponentiation: **
Unary operators: + Binary arithmetic: * / \% Binary arithmetic: + -
Comparisons: < > <= >= Equality relations: == !=
Logical not
Logical and
Logical or

False + 1 + $3.0 / 3$

$$
\text { False + } 1 \text { + } 1.0
$$

$$
1+1.0
$$

2.0

New Tool: Variable Assignment

An assignment statement:

- takes an expression
- evaluates it, and
- stores the value in a variable

Example: (read right to left)
variable
expression
evaluates to 5
equals sign (just one!)

Executing Assignment Statements

$\ggg \mathrm{x}=5 \longrightarrow$ Press ENTER and...
Hmm, looks like nothing happened...

- But something did happen!
- Python assigned the value 5 to the variable x
- Internally (and invisible to you):
memory location
stored value

Retrieving Variables

$\ggg x=5$
>>> x
5
Press ENTER and...
Interactive mode tells me the value of x

In More Detail: Variables (Section 2.1)

- A variable
- is a named memory location (box)
- contains a value (in the box)

In More Detail: Statements

$\ggg x=5 \longrightarrow$ Press ENTER and...
\ggg
Hm, looks like nothing happened...

- This is a statement, not an expression
- Tells the computer to DO something (not give a value)
- Typing it into >>> gets no response (but it is working)

Expressions vs. Statements

Expression

Statement

- Represents something
- Python evaluates it
- End result is a value
- Examples:
- 2.3

Value

- $(3+5) / 4 \subset$ Complex Expression
$-x=5$
- Does something
- Python executes it
- Need not result in a value
- Examples:
- $x=2+1$
- $x=5$

Look so similar
but they are not!

You can assign more than literals

>>> $x=5$
"x gets 5"
$\ggg \mathrm{x}=3.0$ ** $2+4-1$
>>> $x=2+x$
"x gets the value of this expression"

Keeping Track of Variables

- Draw boxes on paper:

$$
\text { >>> x }=5
$$

- New variable declared?

$$
\ggg y=3
$$

Write a new box.

- Variable updated?

$$
\ggg x=7
$$

Cross out old value. Insert new value.

Execute the Statement: $\mathbf{x}=\mathbf{x}+2$

Draw variable x on piece of paper:

1. Evaluate the expression $\mathbf{x}+2$
$\times 5$

- For \mathbf{x}, use the value in variable \mathbf{x}
- Write the expression somewhere on your paper

2. Store the value of the expression in \mathbf{x}

- Cross off the old value in the box
- Write the new value in the box for \mathbf{x}

Did you do the same thing as your neighbor? If not, discuss.

Which one is closest to your answer?

$$
x=x+2
$$

(1.) ${ }^{22}$

And The Correct Answer Is...

${ }^{\text {D. }}$ __(Y)_/

$$
\mathbf{x}=\mathbf{x}+2
$$

Execute the Statement: $\mathbf{x}=3.0 * x+1.0$

 Begin with this:

1. Evaluate the expression 3.0 * $\mathbf{x + 1 . 0}$
2. Store its value in \mathbf{x}

Did you do the same thing as your neighbor? If not, discuss.

Which one is closest to your answer?

$$
\text { B. } \begin{aligned}
& \hline 7 \\
& \times 22.0
\end{aligned}
$$

C.

$$
\begin{aligned}
& \times \frac{3}{3} \\
& \times 22.0
\end{aligned}
$$

D.

$$
x=3.0 * x+1.0
$$

And The Correct Answer Is...

$$
x=3.0 * x+1.0
$$

Executing an Assignment Statement

The command: $\quad \mathbf{x}=3.0 * \mathbf{x + 1 . 0}$
"Executing the command":

1. Evaluate right hand side $\quad 3.0 * \mathbf{x}+\mathbf{1 . 0}$
2. Store the value in the variable \mathbf{x} 's box

- Requires both evaluate AND store steps
- Critical mental model for learning Python

Exercise 1: Understanding Assignment Begin with:
Declare a new variable:

$$
\ggg \text { rate }=4 \quad \times \quad 22.0
$$

$$
\text { rate } 4
$$

Execute this assignment:
>>> rate = x / rate

Did you do the same thing as your neighbor? If not, discuss.

Which one is closest to your answer?

A.
B. $\times 22.0$ race $\frac{6}{3}$ rale 5.5
C.
D.

$$
\times 22.0
$$

rate 5

$$
\text { race } 5
$$ race 5

29

And The Correct Answer Is...

> B. $\times 22.0$ rate 5 rate 5.5

C.
$\times 22.0$
rake $5 \quad 5.5$

D.

$$
\times 22.0
$$

$$
\text { race } \frac{6}{3}
$$

rate $=\mathrm{x}$ / rate

Dynamic Typing

Python is a dynamically typed language

- Variables can hold values of any type
- Variables can hold different types at different times
The following is acceptable in Python:

$$
\begin{array}{ll}
\gg x=1 & \leqslant x \text { contains an int value } \\
\ggg x=x / 2.0 & \leqslant x \text { now contains a float value }
\end{array}
$$

Alternative: a statically typed language

- Examples: Java, C
- Each variable restricted to values of just one type

More Detail: Testing Types

Command: type(<value>)
Can test a variable:
>>> $x=5$
>>> type(x)
<class 'int'>
Can test a type with a Boolean expression: >>> type(2) $==$ int

True

Exercise 2: Understanding Assignment Begin with:

$$
\times 22.0
$$

$$
\text { rate } 5.5
$$

Execute this assignment:
>>> rat = x + rate

Did you do the same thing as your neighbor? If not, discuss.

Which one is closest to your answer?

A.
B. $\times 22.0$
rate 5.5
C.
$\times 22127.5$
rale 5.5

$$
\text { rat } 27.5
$$

D. $\times 22.0$ rale 6 As rail 27.5

E. ${ }^{-} \backslash(ツ)$ _/ \quad rat $=\mathbf{x}+$ rate

(1.)

And The Correct Answer Is... | A. $\times 22927.5$ |
| :--- |
| rake 5.5 |

B. $\times 22.0$ rake 5.5 rat 27.5
C.

$$
\times 22.0
$$

rate 27.5
D. $\times 22.0$ rate Gas rat 27.5

Spelling Matters! \mid rat = x + rate

