Lecture 27

Sorting

Announcements for This Lecture

Finishing Up

- Submit a course evaluation
- Will get an e-mail for this
- Part of "participation grade"
- Final: Dec 17 ${ }^{\text {th }} 9-11: 30 \mathrm{am}$
- Study guide is posted
- Announce reviews on Tues.
- Conflict with Final time?
- Submit to conflict to CMS by next Tuesday!

Assignment 7

- Should be on bolt collisions
- Use weekend for final touches
- Multiple lives
- Winning or losing the game
- Also work on the extension
- Add anything you want
- ONLY NEED ONE
- Ask on Piazza if unsure
- All else is extra credit

Linear Search

- Vague: Find first occurrence of v in $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$.

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post:

$$
\begin{array}{ll}
\text { post: } & \text { 1. } \mathrm{v} \text { is not in } \mathrm{b}[\mathrm{~h} . \mathrm{i}-1] \\
& 2 . \mathrm{i}=\mathrm{k} \quad \text { OR } \mathrm{v}=\mathrm{b}[\mathrm{i}]
\end{array}
$$

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post:
post: $1 . v$ is not in $b[h . i-1]$

2. $\mathrm{i}=\mathrm{k} \quad$ OR $\mathrm{v}=\mathrm{b}[\mathrm{i}]$

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post:
post: $\quad 1 . \mathrm{v}$ is not in $\mathrm{b}[\mathrm{h} . \mathrm{i}-1]$

2. $\mathrm{i}=\mathrm{k} \quad$ OR $\mathrm{v}=\mathrm{b}[\mathrm{i}]$

Linear Search

Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in $b[h . . k-1] " "$ \# Store in i index of the first v in $\mathrm{b}[\mathrm{h} . \mathrm{k}-\mathrm{l}]$ $\mathrm{i}=\mathrm{h}$
\# invariant: v is not in $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]$
while $\mathrm{i}<\mathrm{k}$ and $\mathrm{b}[\mathrm{i}]$! $=\mathrm{v}$:

$$
\mathrm{i}=\mathrm{i}+\mathrm{l}
$$

\# post: v is not in $\mathrm{b}[\mathrm{h} . \mathrm{i} \mathrm{i}-\mathrm{l}]$
\# $\quad \mathrm{i}>=\mathrm{k}$ or b[i] $==\mathrm{v}$
return if if k else -l

Analyzing the Loop

1. Does the initialization make inv true?
2. Is post true when inv is true and condition is false?
3. Does the repetend make progress?
4. Does the repetend keep the invariant inv true?

Binary Search

- Vague: Look for v in sorted sequence segment b[h..k].

Binary Search

- Vague: Look for v in sorted sequence segment b[h..k].
- Better:
- Precondition: b[h..k-1] is sorted (in ascending order).
- Postcondition: b[h.i-1] <v and v <= b[i..k]
- Below, the array is in non-descending order:

Binary Search

- Look for value v in sorted segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$

New statement of the invariant guarantees that we get leftmost position of v if found

- if v is 3 , set i to 0
- if v is 4 , set i to 5
- if v is 5 , set i to 7
- if v is 8 , set i to 10

Binary Search

- Vague: Look for v in sorted sequence segment b[h..k].
- Better:
- Precondition: b[h..k-1] is sorted (in ascending order).
- Postcondition: b[h.i-1] < v and v <= b[i..k]
- Below, the array is in non-descending order:

pre: b	?			
h				k
post: b	< V	$>=\mathrm{v}$		
	i		j	k
inv: b	< V	?	$>\mathrm{V}$	

> Called binary search because each iteration of the loop cuts the array segment still to be processed in half

Binary Search

New statement of the invariant guarantees that we get leftmost position of v if found

Looking at $\mathrm{b}[\mathrm{i}]$ gives linear search from left.
Looking at $\mathrm{b}[\mathrm{j}-1]$ gives linear search from right.
Looking at middle: $\mathrm{b}[(\mathrm{i}+\mathrm{j}) / 2]$ gives binary search.

Sorting: Arranging in Ascending Order

pre: $\mathrm{b} \square^{0} \mathrm{n}^{\mathrm{n}} \quad$ post: $\mathrm{b} \square^{0}$ sorted ${ }^{n}$

Insertion Sort:

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
\# Push b[i] down into its
\# sorted position in b[0..i]
$\mathrm{i}=\mathrm{i}+1$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n:
push_down(b,i)

$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$$
j=i
$$

while $\mathrm{j}>0$:

$$
\begin{aligned}
& \text { if } b[j-1]>b[j]: \\
& \mid \quad \operatorname{swap}(b, j-1, j)
\end{aligned}
$$

$\mathrm{j}=\mathrm{j}-1$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n:
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$$
j=j
$$

while $\mathrm{j}>0$:

$$
\begin{aligned}
& \text { if } \mathrm{b}[\mathrm{j}-1]>b[j]: \\
& \quad \operatorname{swap}(\mathrm{b}, \mathrm{j}-1, \mathrm{j})
\end{aligned}
$$

$$
j=j-1
$$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n:
push_down(b,i)
i $=$ i+l
def push_down(b, i):

$$
\begin{aligned}
& \mathrm{j}=\mathrm{i} \\
& \text { while } \mathrm{j}>0 \text { : } \\
& \left\lvert\, \begin{array}{l}
\text { if } b[j-1]>b[j]: \\
\left\lvert\, \begin{array}{l}
\text { swap }(b, j-1, j) \\
j=j-1
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$$
\begin{aligned}
& \mathrm{j}=\mathrm{i} \\
& \text { while } \mathrm{j}>0 \text { : } \\
& \left\lvert\, \begin{array}{l}
\text { if } b[j-1]>b[j]: \\
\mid \quad \operatorname{swap}(b, j-1, j) \\
j=j-1
\end{array}\right.
\end{aligned}
$$

swap shown in the lecture about lists

0				i		
2	4	4	5	6	6	7

The Importance of Helper Functions

$$
i=0
$$

while i < n : push_down(b,i)

$$
i=i+l
$$

def push_down(b, i):
$j=i$
while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$
$i=0$
Can you understand
all this code below?
while i < n :

$$
j=i
$$

while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$$
\text { temp }=b[j]
$$

$$
b[j]=b[j-1]
$$

b[j-1] = temp

$$
j=j-l
$$

$$
\mathrm{i}=\mathrm{i}+1
$$

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0.i-1-1]""
$\mathrm{j}=\mathrm{i}$
while j > 0:
if $b[j-1]>b[j]:$ swap(b,j-1,j)
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2$: 2 swaps
- Pushdown is in a loop
- Called for i in $0 . . n$
- i swaps each time

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2=\left(n^{2}-n\right) / 2$

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0.i-1-1]"""
$\mathrm{j}=\mathrm{i}$
while j > 0:
if $b[j-1]>b[j]:$ $\operatorname{swap}(b, j-1, j)$
$\mathrm{j}=\mathrm{j}$-l

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2: 2$ swaps
- Pushdown is in a loop
- Called for i in $0 . . n$
- i swaps each time

Insertion sort is an n^{2} algorithm

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2=\left(n^{2}-n\right) / 2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=\mathbf{1 0}$	$\mathrm{n}=\mathbf{1 0 0}$	$\mathrm{n}=\mathbf{1 0 0 0}$
n	0.01 s	0.1 s	1 s
$\mathrm{n} \log \mathrm{n}$	0.016 s	0.32 s	4.79 s
n^{2}	0.1 s	10 s	16.7 m
n^{3}	1 s	16.7 m	11.6 d
2^{n}	1 s	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Major Topic in 2110: Beyond scope of this course

Sorting: Changing the Invariant

pre: $b \square^{0}$? $\square^{n} \quad$ post: $b \square^{0}$

Selection Sort:

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{n}$ sorted

Selection Sort:

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
\# Find minimum in b[i..]
\# Move it to position i
$\mathrm{i}=\mathrm{i}+1$

Compared to insertion sort, selection sort is

A: Slower
B: About the same
C: Faster
D: I don't know

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{n}$

Selection Sort:

Partition Algorithm

- Given a list segment b[h..k] with some value x in $\mathrm{b}[\mathrm{h}]$:
\square

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

change:

- x is called the pivot value
- x is not a program variable
- denotes value initially in b[h]

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
\square
- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

Recursive partitions = sorting

- Called QuickSort (why???)
- Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):
"""Sort the array frasment b[h..k]"""
if $b[h . \mathrm{k}]$ has fewer than 2 elements:
return
$j=\operatorname{partition}(b, h, k)$
\# b[h.j-l] <= b[j] <= b[j+l..k]
\# Sort b[h.j-l] and b[j+l..k]
quick_sort (b, h, j-l)
quick_sort (b, j+l, k)

- Worst Case: array already sorted
- Or almost sorted
- n^{2} in that case
- Average Case: array is scrambled
- $\mathrm{n} \log \mathrm{n}$ in that case
- Best sorting time!

pre: b	x	?		
	h	i i+1		k
post: b	<= x	\mathbf{x}	>= x	

Final Word About Algorithms

- Algorithm:
- Step-by-step way to do something
- Not tied to specific language

List Diagrams

Demo Code

- Implementation:
- An algorithm in a specific language
- Many times, not the "hard part"
- Higher Level Computer Science courses:
- We teach advanced algorithms (pictures)
- Implementation you learn on your own

