Lecture 27

Sorting
Announcements for This Lecture

Finishing Up

• Submit a course evaluation
 ▪ Will get an e-mail for this
 ▪ Part of “participation grade”

• Final: Dec 17th 9-11:30am
 ▪ Study guide is posted
 ▪ Announce reviews on Tues.

• Conflict with Final time?
 ▪ Submit to conflict to CMS by next Tuesday!

Assignment 7

• Should be on bolt collisions
• Use weekend for final touches
 ▪ Multiple lives
 ▪ Winning or losing the game
• Also work on the extension
 ▪ Add anything you want
 ▪ ONLY NEED ONE
• Ask on Piazza if unsure
• All else is extra credit
Linear Search

- **Vague**: Find first occurrence of v in $b[h..k-1]$.
Linear Search

- **Vague:** Find first occurrence of v in $b[h..k-1]$.
- **Better:** Store an integer in i to truthify result condition post:

 post:
 1. v is not in $b[h..i-1]$
 2. $i = k$ OR $v = b[i]$
Linear Search

- **Vague:** Find first occurrence of \(v \) in \(b[h..k-1] \).
- **Better:** Store an integer in \(i \) to truthify result condition post:

 post:
 1. \(v \) is not in \(b[h..i-1] \)
 2. \(i = k \) OR \(v = b[i] \)

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre: (b)</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>post: (b)</td>
<td>v not here</td>
<td>v</td>
</tr>
</tbody>
</table>
Linear Search

- **Vague**: Find first occurrence of v in $b[h..k-1]$.
- **Better**: Store an integer in i to truthify result condition post:

 post:
 1. v is not in $b[h..i-1]$
 2. $i = k \ OR \ v = b[i]$

\[\begin{array}{c c c c}
 h & \ & \ & k \\
 pre: b & \ & \ & ? \\
\end{array}\]

\[\begin{array}{c c c c}
 h & i & \ & k \\
 post: b & v not here & v & ? \\
\end{array}\]

\[\begin{array}{c c c}
 h & \ & k \\
 i & \ & \ \\
 b & \ & v not here \\
\end{array}\]
Linear Search

pre: b

h

?

i

k

post: b

v not here

v

?

OR

i

h

k

b

v not here

inv: b

v not here

?

Linear Search

```python
def linear_search(b, v, h, k):
    
    """Returns: first occurrence of v in b[h..k-1]""

    # Store in i index of the first v in b[h..k-1]
    i = h

    # invariant: v is not in b[h..i-1]
    while i < k and b[i] != v:
        i = i + 1

    # post: v is not in b[h..i-1]
    # i >= k or b[i] == v
    return i if i < k else -1
```

Analyzing the Loop

1. Does the initialization make \texttt{inv} true?
2. Is \texttt{post} true when \texttt{inv} is true and \texttt{condition} is false?
3. Does the repetend make progress?
4. Does the repetend keep the invariant \texttt{inv} true?
Binary Search

• **Vague:** Look for \(v \) in **sorted** sequence segment \(b[h..k] \).
Binary Search

- **Vague:** Look for v in **sorted** sequence segment $b[h..k]$.
- **Better:**
 - **Precondition:** $b[h..k-1]$ is sorted (in ascending order).
 - **Postcondition:** $b[h..i-1] < v$ and $v \leq b[i..k]$

- Below, the array is in non-descending order:

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
</table>
 pre: b | $<$ | v | \geq | v |

12/5/19

Sorting
Binary Search

- Look for value \(v \) in sorted segment \(b[h..k] \)

<table>
<thead>
<tr>
<th></th>
<th>(h)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre:</td>
<td>(b)</td>
<td>?</td>
</tr>
<tr>
<td>post:</td>
<td>(b)</td>
<td>(< v)</td>
</tr>
<tr>
<td>inv:</td>
<td>(b)</td>
<td>(< v)</td>
</tr>
</tbody>
</table>

New statement of the invariant guarantees that we get leftmost position of \(v \) if found

- if \(v \) is 3, set \(i \) to 0
- if \(v \) is 4, set \(i \) to 5
- if \(v \) is 5, set \(i \) to 7
- if \(v \) is 8, set \(i \) to 10

Example: \(b \)
Binary Search

- **Vague:** Look for \(v \) in **sorted** sequence segment \(b[h..k] \).
- **Better:**
 - **Precondition:** \(b[h..k-1] \) is sorted (in ascending order).
 - **Postcondition:** \(b[h..i-1] < v \) and \(v \leq b[i..k] \)
- Below, the array is in non-descending order:

 ![Diagram]

 Called **binary search** because each iteration of the loop cuts the array segment still to be processed in half.
Binary Search

pre: b

post: b

inv: b

i = h; j = k+1;

while i != j:

Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+j)/2] gives binary search.

New statement of the invariant guarantees that we get leftmost position of v if found
Sorting: Arranging in Ascending Order

Insertion Sort:

\[i = 0 \]

while \(i < n \):

Push \(b[i] \) down into its
sorted position in \(b[0..i] \)

\[i = i + 1 \]
Insertion Sort: Moving into Position

i = 0

while i < n:
 push_down(b, i)
 i = i + 1

def push_down(b, i):
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b, j-1, j)
 j = j - 1

0
2 4 4 6 6 7

5

swap shown in the lecture about lists
Insertion Sort: Moving into Position

\[
i = 0
\]
\[
\text{while } i < n:
\]
\[
\qquad \text{push_down}(b, i)
\]
\[
\qquad i = i + 1
\]
\[
\text{def push_down}(b, i):
\]
\[
\qquad j = i
\]
\[
\qquad \text{while } j > 0:
\]
\[
\qquad \qquad \text{if } b[j-1] > b[j]:
\]
\[
\qquad \qquad \quad \text{swap}(b, j-1, j)
\]
\[
\qquad \quad j = j - 1
\]

12/5/19 Sorting 16
Insertion Sort: Moving into Position

\[i = 0 \]

\[\text{while } i < n: \]

\[\quad \text{push_down}(b, i) \]

\[\quad i = i + 1 \]

\def push_down(b, i):

\[j = i \]

\[\quad \text{while } j > 0: \]

\[\quad \text{if } b[j-1] > b[j]: \]

\[\quad \quad \text{swap}(b, j-1, j) \]

\[\quad j = j - 1 \]
Insertion Sort: Moving into Position

i = 0

while i < n:
 push_down(b, i)
 i = i + 1

def push_down(b, i):
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b, j-1, j)
 j = j - 1

0 i
2 4 4 6 6 7 5

12/5/19
The Importance of Helper Functions

```
i = 0
while i < n:
    push_down(b,i)
    i = i+1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b,j-1,j)
        j = j-1
        i = i + 1
```

```
i = 0
while i < n:
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            temp = b[j]
            b[j] = b[j-1]
            b[j-1] = temp
            j = j - 1
        i = i + 1
```
def push_down(b, i):
 """Push value at position i into sorted position in b[0..i-1]"""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b, j-1, j)
 j = j-1

• b[0..i-1]: i elements

• Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps

• Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n^2-n)/2
def push_down(b, i):
 """Push value at position i into sorted position in b[0..i-1]""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b, j-1, j)
 j = j - 1

• b[0..i-1]: i elements

• Worst case:
 ▪ i = 0: 0 swaps
 ▪ i = 1: 1 swap
 ▪ i = 2: 2 swaps

• Pushdown is in a loop
 ▪ Called for i in 0..n
 ▪ i swaps each time

Insertion sort is an n^2 algorithm

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n^2-n)/2
Algorithm “Complexity”

• **Given**: a list of length n and a problem to solve
• **Complexity**: *rough* number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>$n=10$</th>
<th>$n=100$</th>
<th>$n=1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x1019 y</td>
<td>3x10290 y</td>
</tr>
</tbody>
</table>

Major Topic in 2110: Beyond scope of this course
Sorting: Changing the Invariant

pre: \(b \) sorted
post: \(b \) sorted

Selection Sort:

pre: \(b \) ?
post: \(b \) sorted

inv: \(b \) sorted, \(\leq b[i..] \) \(\geq b[0..i-1] \)

\[i = 0 \]

while \(i < n \):

\# Find minimum in \(b[i..] \)

\# Move it to position \(i \)

\[i = i + 1 \]

First segment always contains smaller values
Sorting: Changing the Invariant

pre: \(b \) sorted

post: \(b \) sorted

Selection Sort:

\[
\begin{align*}
\text{inv: } & b \text{ sorted, } \leq b[i..] \geq b[0..i-1] \\
\text{i = 0} \\
\text{while } i < n: \\
& \text{# Find minimum in } b[i..] \\
& \text{# Move it to position } i \\
& i = i + 1
\end{align*}
\]

First segment always contains smaller values

Compared to insertion sort, selection sort is

A: Slower
B: About the same
C: Faster
D: I don’t know
Sorting: Changing the Invariant

Selection Sort:

- **Pre:** $b \text{?}$
- **Post:** $b \text{sorted}$

Inv: $b \leq b[i..] \geq b[0..i-1]$

- $i = 0$
- **while** $i < n$:
 - $j = \text{index of min of } b[i..n-1]$
 - $\text{swap}(b,i,j)$
 - $i = i + 1$

First segment always contains smaller values

Selection sort also is an n^2 algorithm

This is n steps

12/5/19

Sorting 25
Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

 \[
 \begin{array}{|c|}
 \hline
 h \quad & k \\
 \hline
 \end{array}
 \quad \quad \quad \quad \quad
 \begin{array}{|c|}
 \hline
 \text{pre: } b \left[\begin{array}{c}
 x \\
 \end{array} \right] \\
 \hline
 \end{array}
 \]

• Swap elements of b[h..k] and store in j to truthify post:

 \[
 \begin{array}{|c|c|}
 \hline
 h & i \\
 \hline
 \end{array}
 \quad \quad \quad \quad \quad
 \begin{array}{|c|c|}
 \hline
 i+1 & k \\
 \hline
 \end{array}
 \quad \quad \quad \quad \quad
 \begin{array}{|c|c|c|}
 \hline
 \text{post: } b \left[\begin{array}{c}
 \leq x \\
 x \\
 \geq x \\
 \end{array} \right] \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{|c|c|c|}
 \hline
 h & i & k \\
 \hline
 \end{array}
 \]

change: \quad \begin{array}{|c|c|c|c|c|c|c|c|c|}
 \hline
 3 & 5 & 4 & 1 & 6 & 2 & 3 & 8 & 1 \\
 \hline
 \end{array}

\quad \text{into} \quad \begin{array}{|c|c|c|c|c|c|c|c|}
 \hline
 b \left[\begin{array}{c}
 1 & 2 & 1 & 3 & 5 & 4 & 6 & 8 \\
 \end{array} \right] \\
 \hline
 \end{array}

or \quad \begin{array}{|c|c|c|c|c|c|c|}
 \hline
 b \left[\begin{array}{c}
 1 & 2 & 3 & 1 & 3 & 4 & 5 & 6 & 8 \\
 \end{array} \right] \\
 \hline
 \end{array}

• x is called the pivot value

 - x is not a program variable
 - denotes value initially in b[h]
Sorting with Partitions

• Given a list segment \(b[h..k]\) with some value \(x\) in \(b[h]\):

\[
\begin{array}{c}
\text{pre: } b & x & ? \\
\text{h} & \text{i} & \text{i+1} & \text{k}
\end{array}
\]

• Swap elements of \(b[h..k]\) and store in \(j\) to truthify post:

\[
\begin{array}{c}
\text{post: } b & \leq y & y & \geq y & x & \geq x \\
\end{array}
\]

Recursive partitions = sorting

- Called \textbf{QuickSort} (why???)
- Popular, fast sorting technique
def quick_sort(b, h, k):
 """Sort the array fragment b[h..k]""
 if b[h..k] has fewer than 2 elements:
 return
 j = partition(b, h, k)
 # b[h..j-1] <= b[j] <= b[j+1..k]
 # Sort b[h..j-1] and b[j+1..k]
 quick_sort(b, h, j-1)
 quick_sort(b, j+1, k)

• **Worst Case:**
 - array already sorted
 - Or almost sorted
 - n^2 in that case

• **Average Case:**
 - array is scrambled
 - $n \log n$ in that case
 - Best sorting time!
Final Word About Algorithms

- **Algorithm:**
 - Step-by-step way to do something
 - Not tied to specific language

- **Implementation:**
 - An algorithm in a specific language
 - Many times, not the “hard part”

- **Higher Level Computer Science courses:**
 - We teach advanced algorithms (pictures)
 - Implementation you learn on your own