Lecture 25

Designing Sequence Algorithms
Announcements for This Lecture

Prelim 2

- Difficulty was reasonable
 - **Mean:** 72, **Median:** 74
 - Just 2 points below target
- What do grades mean?
 - **A:** 80-100
 - **B:** 60-100
 - **C:** 30-55
- Final will be about same
 - But a few easier parts

Assignment & Lab

- A6 is not graded yet
 - Done early next week
 - Survey still open today
- A7 due **Tues, Dec. 10**
 - Extensions are possible!
 - Contact your lab instructor
- Lab Today: Office Hours
 - Get help on A7 aliens
 - Anyone can go to any lab

11/26/19
Example of an assertion about an sequence b. It asserts that:

1. \(b[0..k-1] \) is sorted (i.e. its values are in ascending order)
2. Everything in \(b[0..k-1] \) is \(\leq \) everything in \(b[k..\text{len}(b)-1] \)

Given index \(h \) of the first element of a segment and index \(k \) of the element that follows that segment, the number of values in the segment is \(k - h \).

\(b[h..k-1] \) has \(k - h \) elements in it.
Developing Algorithms on Sequences

• Specify the algorithm by giving its **precondition** and **postcondition** as pictures.
• Draw the **invariant** by drawing another picture that “generalizes” the **precondition** and **postcondition**
 ▪ The invariant is true at the beginning and at the end
• The four loop design questions
 1. How does loop start (how to make the invariant true)?
 2. How does it stop (is the postcondition true)?
 3. How does the body make progress toward termination?
 4. How does the body keep the invariant true?
Generalizing Pre- and Postconditions

- **Dutch national flag: tri-color**
 - Sequence of 0..n-1 of red, white, blue "pixels"
 - Arrange to put reds first, then whites, then blues

<table>
<thead>
<tr>
<th>pre:</th>
<th>n</th>
<th>post:</th>
<th>b</th>
<th>0</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reds</td>
<td>whites</td>
<td>blues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(values in 0..n-1 are unknown)

Make the **red**, **white**, **blue** sections initially **empty**:
- Range i..i-1 has 0 elements
- Main reason for this trick

Changing loop variables turns invariant into postcondition.
Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

 \[
 \begin{align*}
 \text{pre: } & \quad b \quad ? \\
 \text{post: } & \quad x \text{ is the min of this segment}
 \end{align*}
 \]

 \(0 \leq b \leq n \geq 0\) (values in 0..n are unknown)

- Put negative values before nonnegative ones.

 \[
 \begin{align*}
 \text{pre: } & \quad b \quad ? \\
 \text{post: } & \quad < 0 \quad k \quad \geq 0
 \end{align*}
 \]

 \(0 \leq b \leq k \leq n \geq 0\) (values in 0..n are unknown)
Generalizing Pre- and Postconditions

- **Finding the minimum of a sequence.**

 pre: \(b \) ? \(x \) is the min of this segment \(j \) ? \(b \) ? \(x \) is min of this segment \(j \)

 post: \(b \) \(x \) is the min of this segment \(j \) ? \(b \) ? \(x \) is min of this segment \(j \)

- **Put negative values before nonnegative ones.**

 pre: \(b \) ? \(x \) is the min of this segment \(j \) ? \(b \) ? \(x \) is min of this segment \(j \)

 post: \(b \) \(< 0 \) \(>= 0 \)

(values in 0..n are unknown)
Generalizing Pre- and Postconditions

- **Finding the minimum of a sequence.**

 pre: \(b \)

 \(0 \)

 \(n \)

 ?

 and \(n \geq 0 \)

 post: \(b \)

 \(0 \)

 \(n \)

 \(x \) is the min of this segment

 inv: \(b \)

 \(0 \)

 \(j \)

 \(n \)

 ?

 \(x \) is min of this segment

 \(? \)

- **Put negative values before nonnegative ones.**

 pre: \(b \)

 \(0 \)

 \(n \)

 ?

 and \(n \geq 0 \)

 post: \(b \)

 \(0 \)

 \(n \)

 \(k \)

 \(\geq 0 \)

 pre: \(j = 0 \)

 post: \(j = n \)
Generalizing Pre- and Postconditions

• Finding the minimum of a sequence.

pre: \(b \) ? \(x \) is the min of this segment \(0 \ldots n \) and \(n \geq 0 \) (values in \(0 \ldots n \) are unknown)

post: \(b \) \(x \) is min of this segment \(0 \ldots j \) \(j \ldots n \) \(pre: \ j = 0 \)
\(post: \ j = n \) (values in \(j \ldots n \) are unknown)

inv: \(b \) \(x \) is min of this segment ? \(0 \ldots k \) \(k \ldots j \) \(j \ldots n \) \(pre: \ j = 0 \)
\(post: \ j = n \) (values in \(k \ldots j \) are unknown)

• Put negative values before nonnegative ones.

pre: \(b \) ? \(x \) is min of this segment \(0 \ldots n \) and \(n \geq 0 \) (values in \(0 \ldots n \) are unknown)

post: \(b \) \(< 0 \) \(\geq 0 \) \(0 \ldots k \) \(k \ldots j \) \(j \ldots n \) (values in \(k \ldots j \) are unknown)

inv: \(b \) \(< 0 \) ? \(\geq 0 \) \(0 \ldots k \) \(k \ldots j \) \(j \ldots n \) (values in \(k \ldots j \) are unknown)
Generalizing Pre- and Postconditions

1. **Finding the minimum of a sequence.**
 - **pre:** 0
 - **post:** If x is the min of this segment, then...
 - **inv:** x is the min of this segment
 - **pre:** b
 - **post:** x is the min of this segment
 - **inv:** x is min of this segment
 - **pre:** b
 - **post:** x is the min of this segment
 - **inv:** b

2. **Put negative values before nonnegative ones.**
 - **pre:** b
 - **post:** If < 0 then...
 - **inv:** b
 - **pre:** b
 - **post:** If < 0 then...
 - **inv:** b

(values in 0..n are unknown)
(values in j..n are unknown)
(values in k..j are unknown)
Partition Algorithm

- Given a sequence $b[h..k]$ with some value x in $b[h]$:

 \[
 h \quad x \quad ? \quad k
 \]

- Swap elements of $b[h..k]$ and store in j to truthify post:

 \[
 h \quad i \quad i+1 \quad k
 \]

 \[
 \begin{array}{c|c|c}
 \hline
 \pre{\text{post}}: \ b & \pre{\leq} x & x & \pre{\geq} x \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c}
 \hline
 \text{change:} & h & 3 & 5 & 4 & 1 & 6 & 2 & 3 & 8 & 1 \\
 \hline
 \text{into} & h & 1 & 2 & 1 & 3 & 5 & 4 & 6 & 3 & 8 \\
 \hline
 \end{array}
 \]

 - x is called the pivot value
 - x is not a program variable
 - denotes value initially in $b[h]$
Partition Algorithm

• Given a sequence \(b[h..k] \) with some value \(x \) in \(b[h] \):

 \[
 \begin{array}{c|c|c}
 h & & k \\
 \hline
 \text{pre: } b & x & ? \\
 \end{array}
 \]

• Swap elements of \(b[h..k] \) and store in \(j \) to truthify post:

 \[
 \begin{array}{c|c|c|c|c}
 h & i & i+1 & k \\
 \hline
 \text{post: } b & \leq x & x & \geq x \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c}
 h & i & k \\
 \hline
 \text{change: } b & 3 & 5 & 4 & 1 & 6 & 2 & 3 & 8 & 1 \\
 \text{into } b & 1 & 2 & 1 & 3 & 5 & 4 & 6 & 3 & 8 \\
 \text{or } b & 1 & 2 & 3 & 1 & 3 & 4 & 5 & 6 & 8 \\
 \end{array}
 \]

• \(x \) is called the pivot value
 - \(x \) is not a program variable
 - denotes value initially in \(b[h] \)
Partition Algorithm

• Given a sequence $b[h..k]$ with some value x in $b[h]$:

 $b[h..k]$

 pre: $b[h][x]$?

 post: $b[<x][x][>=x]$

• Swap elements of $b[h..k]$ and store in j to truthify post:

 $b[h..k]$

 pre: $b[h][i][i+1][k]$

 post: $b[<x][x][>=x]$
Partition Algorithm

• Given a sequence $b[h..k]$ with some value x in $b[h]$:

 \[
 \begin{array}{c|c|c|c|c|}
 & h & \cdots & k \\
 \hline
 \text{pre: } b & x & ? \\
 \end{array}
 \]

• Swap elements of $b[h..k]$ and store in j to truthify post:

 \[
 \begin{array}{c|c|c|c|c|c|c|}
 & h & i & i+1 & \cdots & k \\
 \hline
 \text{post: } b & \leq x & x & \geq x \\
 \end{array}
 \]

\[
\begin{array}{c|c|c|c|c|c|c|}
& h & i & j & \cdots & k \\
\hline
\text{inv: } b & \leq x & x & ? & \geq x \\
\end{array}
\]

• Agrees with precondition when $i = h$, $j = k+1$
• Agrees with postcondition when $j = i+1$
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!
We want to partition the original list
```python
def partition(b, h, k):
    
    """Partition list b[h..k] around a pivot x = b[h]""
    i = h; j = k+1; x = b[h]
    
    # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

    while i < j:
        if b[i+1] >= x:
            # Move to end of block.
            _swap(b,i+1,j-1)
            j = j - 1
        else:
            # b[i+1] < x
            _swap(b,i,i+1)
            i = i + 1

    # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
    return i
```

```
1 2 3 1 5 0 6 3 8
```

Sequence Algorithms

11/26/19
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else:
 # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i

11/26/19 Sequence Algorithms 17
def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k + 1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j - 1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b, i+1, j-1)
 j = j - 1
 else:
 # b[i+1] < x
 _swap(b, i, i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
Dutch National Flag Variant

- Sequence of integer values
 - ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
 - Only rearrange part of the list, not all

```
<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 0</td>
<td>= 0</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>h</th>
<th>t</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 0</td>
<td>?</td>
<td>= 0</td>
<td>&gt; 0</td>
<td></td>
</tr>
</tbody>
</table>
```
Dutch National Flag Variant

- **Sequence of integer values**
 - ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
 - Only rearrange part of the list, not all

<table>
<thead>
<tr>
<th>pre:</th>
<th>b</th>
<th>h</th>
<th>k</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>post:</td>
<td>b</td>
<td>< 0</td>
<td>= 0</td>
<td>> 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inv:</th>
<th>b</th>
<th>h</th>
<th>t</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>post:</td>
<td>t = i</td>
<td>pre:</td>
<td>t = h, i = k+1, j = k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence Algorithms
def dnf(b, h, k):
 """Returns: partition points as a tuple (i,j)"""
 t = h; i = k+1, j = k;
 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1; j = j-1
 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)
def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)
def dnf(b, h, k):
 """Returns: partition points as a tuple (i,j)""
 t = h; i = k+1, j = k;
 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1; j = j-1
 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)
Dutch National Flag Algorithm

```python
def dnf(b, h, k):
    """Returns: partition points as a tuple (i,j)"""
    t = h; i = k+1, j = k;
    # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
    while t < i:
        if b[i-1] < 0:
            swap(b, i-1, t)
            t = t+1
        elif b[i-1] == 0:
            i = i-1
        else:
            swap(b, i-1, j)
            i = i-1; j = j-1
    # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
    return (i, j)
```

11/26/19 Sequence Algorithms 25
Will Finish This Next Week