

1

Generalizing Pre- and Postconditions

3

Partition Algorithm	
- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$: h	
pre: b x	
- Swap elements of b[h.k] $\underset{\mathrm{h}}{\text { and }} \underset{\mathrm{i}+1}{\text { ane }}$ in j to truthify $\underset{\mathrm{k}}{\text { post: }}$	
post: b < $<$ x ${ }^{\text {a }}$	>= x
h k	
change: $\quad \mathrm{b} \quad 354162381$	
h i k	- x is called the pivot value - x is not a program variable - denotes value initially in b[h]
into b $\quad 121354638$	
or $\quad \mathrm{b} \quad 123134568$	

5

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
- The invariant is true at the beginning and at the end
- The four loop design questions

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

2

Generalizing Pre- and Postconditions

- Put negative values before nonnegative ones.

4

Partition Algorithm

- Given a sequence $b[h . . k]$ with some value x in $b[h]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Partition Algorithm Implementation

7

Partition Algorithm Implementation

9

11

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$i=h ; j=k+l ; x=b[h]$
\# invariant: $b[h . i-1]<x, b[i]=x, b[j . k]>=x$

$<=\mathbf{x}$ \mathbf{x} $?$ $>=\mathbf{x}$ h i $\mathrm{i}+1$ j k 1 2 3 1 5 0 6 3

$\#$ invariant: $b[h$
while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
_swap(b,i+1,j-1)
$\mathrm{j}=\mathrm{j}-\mathrm{l}$
else: \#b[i+1]<x
_swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-1]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x, and $\mathrm{b}[\mathrm{i}+1 . \mathrm{k}]>=\mathrm{x}$ return i

8

Dutch National Flag Variant

- Sequence of integer values
- 'red' = negatives, 'white' $=0$, 'blues' $=$ positive
- Only rearrange part of the list, not all

10

Dutch National Flag Algorithm

return (i, j)

12

