Lecture 23

Loop Invariants
Announcements for This Lecture

Prelim 2
- Thursday at 7:30 pm
 - **A–F** in Uris G01
 - **G–H** in Malott 228
 - **I–L** in Ives 305
 - **M–Z** in Statler Aud.
- All review material online
 - Similar to previous years
 - Just changed “hard parts”

Assignments
- **A6 due TOMORROW**
 - Complete it by midnight
 - Also, fill out survey
- **A7 due December 10**
 - Focus of Thursdays lecture
 - 2.5 weeks including T-Day
 - 2 weeks without the break
 - Extensions are possible!
- **Both are very important**
 - Each worth 8% of grade
Goal For Today

• This lecture is a **programming technique**
 - Completely independent of Python
 - Will learn it again (exactly) in CS 2110

• Useful tool for ensuring **code correctness**
 - Some loops are too complicated to debug
 - Relying on watches/traces not enough
 - This technique helps reduce errors at the start

• Preview of what higher level CS is like
Terminology: Range Notation

• \(m..n \) is a range containing \(n+1-m \) values
 - \(2..5 \) contains 2, 3, 4, 5.\(\) Contains 5+1 – 2 = 4 values
 - \(2..4 \) contains 2, 3, 4.\(\) Contains 4+1 – 2 = 3 values
 - \(2..3 \) contains 2, 3.\(\) Contains 3+1 – 2 = 2 values
 - \(2..2 \) contains 2.\(\) Contains 2+1 – 2 = 1 values
 - \(2..1 \) contains ???

What does \(2..1 \) contain?

A: nothing
B: 2,1
C: 1
D: 2
E: something else
Terminology: Range Notation

- $m..n$ is a range containing $n+1-m$ values
 - $2..5$ contains $2, 3, 4, 5$. Contains $5+1-2 = 4$ values
 - $2..4$ contains $2, 3, 4$. Contains $4+1-2 = 3$ values
 - $2..3$ contains $2, 3$. Contains $3+1-2 = 2$ values
 - $2..2$ contains 2. Contains $2+1-2 = 1$ values
 - $2..1$ contains ???

- The notation $m..n$, always implies that $m \leq n+1$
 - So you can assume that even if we do not say it
 - If $m = n+1$, the range has 0 values
 Assertions: Tracking Code State

• **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 ▪ Can either be a [comment](https://example.com), or an [assert](https://example.com) command

• **invariant**: assertion supposed to "always" be true
 ▪ If temporarily invalidated, must make it true again
 ▪ **Example**: class invariants and class methods

• **loop invariant**: assertion supposed to be true before and after each iteration of the loop

• **iteration of a loop**: one execution of its body
Assertions versus Asserts

• **Assertions** *prevent bugs*
 - Help you keep track of what you are doing
• Also **track down bugs**
 - Make it easier to check belief/code mismatches
• The **assert** statement is a (type of) assertion
 - One you are enforcing
 - Cannot always convert a comment to an assert

x is the sum of 1..n

Comment form of the assertion.

The root of all bugs!

\[
\begin{array}{c}
 x \quad ? \\
 n \quad \text{1} \\
\end{array}
\]

\[
\begin{array}{c}
 x \quad ? \\
 n \quad \text{3} \\
\end{array}
\]

\[
\begin{array}{c}
 x \quad ? \\
 n \quad \text{0} \\
\end{array}
\]
Preconditions & Postconditions

• **Precondition**: assertion placed before a segment
• **Postcondition**: assertion placed after a segment

Relationship Between Two

If **precondition** is true, then **postcondition** will be true

x = sum of 1..n-1
x = x + n
n = n + 1
x = sum of 1..n-1

x contains the sum of these (6)

x contains the sum of these (10)
Solving a Problem

precondition

x = sum of 1..n
n = n + 1
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

11/19/19
Loop Invariants
Solving a Problem

What statement do you put here to make the postcondition true?

A: \(x = x + 1 \)
B: \(x = x + n \)
C: \(x = x + n+1 \)
D: None of the above
E: I don’t know

Remember the new value of \(n \)
Invariants: Assertions That Do Not Change

- **Loop Invariant:** an assertion that is true before and after each iteration (execution of repetend)

```plaintext
x = 0; i = 2
while i <= 5:
    x = x + i*i
    i = i + 1
# x = sum of squares of 2..5
```

Invariant:

```plaintext
x = sum of squares of 2..i-1
```

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \quad i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[x = x + i \cdot i \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\[
\text{while } i \leq 5:
\]

\[
\begin{align*}
\quad & x = x + i \times i \\
\quad & i = i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1: \(2..1 \) (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[
x = 0; \ i = 2
\]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

- \(x = x + i^2 \)
- \(i = i + 1 \)

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:
- Range 2..i-1: 2

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\[\text{while } i \leq 5: \]
\[\quad x = x + i \times i \]
\[\quad i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3
Range 2..i-1: 2..3

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of 2..i-1

while \(i \leq 5 \):

\[x = x + i \times i \]

\[i = i + 1 \]

Post: \(x = \) sum of squares of 2..5

Integers that have been processed: 2, 3, 4

Range 2..i-1: 2..4

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5: \)

\begin{align*}
 x &= x + i^2 \\
 i &= i + 1
\end{align*}

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\(x = 0; \ i = 2 \)

\# Inv: \(x = \) sum of squares of 2..\(i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
\text{\(x = x + i \times i \)} \\
\text{\(i = i + 1 \)}
\end{align*}
\]

\# Post: \(x = \) sum of squares of 2..5

Integers that have been processed: 2, 3, 4, 5

Range 2..\(i-1 \): 2..5

Invariant was always true just before test of loop condition. So it’s true when loop terminates

The loop processes the range 2..5
Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k = a

while k <= b:
 process integer k
 k = k + 1

post: integers in a..b have been processed

Command to do something

Equivalent postcondition

Loop Invariants
Designing Integer while-loops

1. Recognize that a range of integers \(b..c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

```python
while k <= c:
    k = k + 1
```

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed

while k <= c:
 k = k + 1

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers \(b..c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))

```plaintext
# Process \( b..c \)
Initialize variables (if necessary) to make invariant true

# Invariant: range \( b..k-1 \) has been processed

while \( k <= c \):
    # Process \( k \)
    \( k = k + 1 \)

# Postcondition: range \( b..c \) has been processed
```

11/19/19

Loop Invariants
Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

Invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

11/19/19

Loop Invariants
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k−1
D: 1..k−1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

Command to do something

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

for s = 'ebeee', x = 2

Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k−1
D: 1..k−1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k−1]
D: x = no. adj. equal pairs in s[0..k−1]
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k-1
D: 1..k-1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k-1]
D: x = no. adj. equal pairs in s[0..k-1]
E: I don’t know

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition

for s = 'ebeee', x = 2
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Command to do something
for s = 'ebeee', x = 2
Equivalent postcondition
Finding an Invariant

```python
# set x to # adjacent equal pairs in s
x = 0
k = 1
#
# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
    # Process k
    x = x + 1 if (s[k-1] == s[k]) else 0
    k = k + 1
#
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition

k: next integer to process.

What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
Reason carefully about initialization

1. What is the invariant?

```
# s is a string; len(s) >= 1
# Set c to largest element in s

# inv:
while k < len(s):
    # Process k
    k = k + 1

# c = largest char in s[0..len(s)-1]
```

11/19/19 Loop Invariants 36
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

c = ??
k = ??

inv: c is largest element in s[0..k–1]

while k < len(s):
 # Process k
 k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

Command to do something

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

c = ??

Command to do something

k = ??

inv: c is largest element in s[0..k−1]

while k < len(s):
 # Process k
 k = k + 1

c = largest char in s[0..len(s)−1]

Equivalent postcondition

1. What is the invariant?

2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
inv: c is largest element in s[0..k–1]
while k < len(s):
 # Process k
 k = k+1
c = largest char in s[0..len(s)–1]

1. What is the invariant?

2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k–1 is not empty. You must start with k = 1.