
PREPARING FOR PRELIM 2

CS 1110: FALL 2019

This handout explains what you have to know for the second prelim. There will be a review session with
detailed examples to help you study. To prepare for the prelim, you can (1) practice writing functions and
classes in Python, (2) review the assignments and labs, (3) review the lecture slides, and (4) memorize
terminology listed below.

The prelim will not cover while-loops. It covers material up to and including the lecture on November 12th.
The test will focus on recursion, iteration, and classes (e.g. Assignments 4 - 6, as well as all related labs).
Exceptions are again fair game, but only as a short-answer question.

1. Exam Information

The exam will be held Thursday, November 21st. Because of the size of the class, we are split across
multiple classrooms. Rooms are assigned by the first letter of your labs name (unless you are taking a
make-up). Pay careful attention to your room assignment.

• Students with last names A – F meet in Uris Hall G01.
• Students with last names G – H meet in Malott Hall 228.
• Students with last names I – L meet in Ives Hall 305.
• Students with last names M – Z meet in Statler Auditorium (185).

If you cannot make the time assigned to you, then you must file an exam conflict in CMS. Otherwise,
we will expect you to show up to the room and time assigned to you.

Review Session. There will be a review session on Sunday, November 17th at 5 pm in Statler Audi-
torium. It will cover material in this handout and explain the basic structure of the exam. It will also go
over several sample problems to help you prepare for the exam.

2. Content of the Exam

In studying for this exam, you should be wary of looking at the past exams too closely. While the Fall
prelims are good exams to study from, the other exams are not. The material in all of the Spring semesters
(even 2013) is very different for the second prelim. If you want to study a Spring semester, we recommend
the 2019 Spring semester only.

Once again, there will be (at most) five questions, each of roughly equal weight. These questions will be
taken from some combination of the following six topics:

Recursion. You will be asked to write a recursive function. It will be roughly the complexity of the recursive
functions in the lab (e.g. lab 7). We are unlikely to have a Turtle question. The recursion questions on Fall
2018 Prelim 2 are a good example of what we might ask: one straight-forward recusive function and one
harder one (Recursion questions are often picked as the A-level question). For a real challenge, look at the

1



2 CS 1110: FALL 2019

Fall 2014 Prelim 2 questions (This was a notoriously hard prelim and many lab problems now come from
this exam). Avoid the 2017 exam. We made a mistake designing segregate and that function is way harder
than we though (it is even too hard for an A-level question).

Your recursive function will either be a straight-forward recursive definition (think palindrome) or it will ask
you to solve a divide-and-conquer problem. If it is the latter, remember the three steps:

(1) Solve the problem on small data
(2) Break up the problem and solve it (recursively) on the two halves
(3) Combine the answers back together to get the final answer

You should also be prepared to draw a (short) call stack for a recursive function. We have not decided to
add such a question yet, but in the past, the really short recursive functions are generally all-or-nothing. A
call stack question would allow us to test your knowledge of recursion even if you did not do so well on the
programming part.

Iteration. You will be given a problem that you will need to use a for-loop to solve. You should know how
to use a for-loop on a sequence if you are given one, or how to use range() if you are not given one. You
should know how to use an accumulator if needed to perform calculations using a for-looop.

As part of this question, we might ask you to write a function that processes a 2-dimensional list. This
would likely require two nested for-loops. The Filter should have given you a lot of experience with this.
We may also ask you to loop over dictionaries. Look at the 2014 Fall Prelim for an example of this (Though
these problems were the optional activities in the dictionary lab this year).

Classes. You should know how to create a class that includes attributes, getters, setters, an initializer,
and very simple methods. You should know the names of the three most important built-in methods (e.g.
__init__,__str__, and __eq__), but you do not need to know the names of any of the others. We expect
you to be able to construct getters and setters for attributes given a class invariant.

You should also know how to create a subclass, and should know how inheritance and overriding work
in Python. You should expect to be given a base class and be asked to subclass it to provide additional
functionality.

Diagramming Objects. You will be given a series of assignments and constructor calls. You will be
expected to (1) identify the number of objects that are created, (2) draw folder representations of each of
each object, and (3) draw folder representations of each class. You should have a lot of experience with this
after Assignment 5.

Short Answer. In recent years, the four topics above have been long enough that we have not asked
short-answer questions on the second prelim (instead, saving them for the final). If we do ask short answer
questions, they will focus on terminology, particularly regarding object-oriented methodology. For this part
of the test, we recommend that you review the lecture slides and the provided demo code. In addition, we
have a provided a list of important terminology below.

The short answer questions may also include short, poutporri-style questions that were not long enough to
merit a separate category of their own. For example, we might ask a few questions about dictionaries or
nested lists here if we did not cover them anywhere else on the exam.



PREPARING FOR PRELIM 2 3

3. Terminology and Important Concepts

Below, we summarize the terms you should know for this exam. You should be able to define any term below
clearly and precisely. If it is a Python statement, you should know its syntax and how to execute it. You
should know all of this in addition to the terminology that you had to learn for the first prelim.

Abstraction. Abstraction is when one class pretends to be another through operator overloading or familliar
looking methods. For example, in A6 you used the __len__, __getitem__, and __setitem__ methods to
make your image act like a list. You also provided both a one-dimension and a two-dimensional interface to
the image. Abstraction helps a user work with a complicated concept (like image buffers) by presenting it
to the user in a simple-to-understand form.

Accumulator. An accumulator is a fancy name for a variable in a for-loop that stores information computed
in the for-loop and which will be still available when the for-loop is complete.

Example: In the for loop
total = 0
for x in range(5):

total = total + x

the variable total is an accumulator. It stores the sum of the values 0..4.

Attribute. Attributes are variables that are stored inside of an object. Instance attributes belong to an
object or instance. Instance attributes are created by assignment statement that prefaces the object name
before the period. They are typically created in the class initializer.

Class attributes belong to the class. They are created by an assignment statement that prefaces the class
name before the period. They are also created by any assignment statement in the class definition that is
outside of a method definition.

It is impossible to enforce invariants on attributes as any value can be stored in an attribute at any time.
Therefore, we prefer to make attributes hidden (by starting their name with an underscore), and replacing
them with getters and setters.

Example: If the variable color stores an RGB object, then the assignment color.red = 255 alters the red
instance attribute. The assignment RGB.x = 1 would create a class attribute x.

Bottom-Up Rule. This is the rule by which Python determines which attribute or method definition to
use (when the attribute is used in an expression, or the method is called). It first looks in the object folder.
If it cannot find it there, it moves to the class folder for this object. It then follows the arrows from child
class to parent class until it finds it. If Python reaches the folder for object (the superest class of all) and
still cannot find it, it raises an error.

If the attribute or method is in multiple folders, it uses the first one that it finds.

Class. A class is any type that is not built-in to Python (unlike int, float, bool, and str which are
built-in). A value of this type is called an object.



4 CS 1110: FALL 2019

Class definition. This is a template or blueprint for the objects (or instances) of the class. A class defines
the components of each object of the class. All objects of the class have the same components, meaning they
have the same attributes and methods. The only difference between objects is the values of their attributes.
Using the blueprint analogy, while many houses (objects) can be built from the same blueprint, they may
differ in color of rooms, wallpaper, and so on.

In Python, class definitions have the following form:

class <classname>(<superclass>):
<class specification>
<getters and setters>
<initializer definition>
<method definitions>

In most cases, we use the built-in class object as the super class.

Constructor. A constructor is a function that creates a object for a class. It puts the object in heap space,
and returns the name of the object (e.g. the folder name) so you can store it in a variable. A constructor
has the same name as the type of the object you wish to create.

When called, the constructor does the following:

• It creates an empty object folder.

• It puts the folder into heap space.

• It executes the initializer method __init__ defined in the body of the class. In doing so, it

– Passes the folder name to that parameter self

– Passes the other arguments in order

– Executes the commands in the body of __init__

• When done with __init__ it returns the object (folder) name as final value of expression.

There are no return statements in the body of __init__; Python handles this for you automatically.

Example constructor call (within a statement) : color = RGB(255,0,255)

Example __init__ definition:

def __init__(self,x,y):
self.x = x
self.y = y

Default Argument. A default argument is a value that is given to a parameter if the user calling the
function or method does not provide that parameter. A default argument is specified by wording the
parameter as an assignment in the function header. Once you provide a default argument for a parameter,
all parameters following it in the header must also have default argumetns.



PREPARING FOR PRELIM 2 5

Example:

def foo(x,y=2,z=3):
...

In this example, the function calls foo(1), foo(1,0), foo(1,0,0), and foo(1,z=0) are all legal, while
foo() is not. The parameter x does not have default arguments, while y and z do.

Duck Typing. Duck typing is the act of determining if an object is of the correct “type” by simply checking
if it has attributes or methods of the right names. This much weaker than using the type() function, because
two completely different classes (and hence different types) could share the same attributes and methods.
The name was chosen because “If it looks like a duck and quacks like a duck, then it must be a duck.”

Encapsulation. Encapsulation is the process of hiding parts of your data and implementation from users
that do not need access to that parts of your code. This includes restricting access to attributes via getters
and setters, but it also includes the usage of hidden methods as well. This process makes it easier for you
to make changes in your own code without breaking the code of anyone who is using your class. See the
definitions of interface and implementation.

Getter. A getter is a special method that returns the value of an instance attribute (of the same name)
when called. It allows the user to access the attribute without giving the user permission to change it. It is
an important part of encapsulation.

Example: If _minutes is an instance attribute in class Time, then the getter would be

class Time(object):
def getMinutes(self):

"""Returns the minutes attribute"""
return self._minutes

Global Space. Global space is area of memory that stores any variable that is not defined in the body of a
function. These variables include both function names and modules names, though it can include variables
with more traditional values. Variables in global space remain until you explicitly erase them or until you
quit Python.

The Heap. The heap or heap space is the area of memory that stores mutable objects (e.g. folders). It also
stores function definitions, the contents of modules imported with the import command, as well as class
folders. Folders in the heap remain until you explicitly erase them or until you quit Python. You cannot
access the heap directly. You access them with variables in global space or in a call frame that contain the
name of the object in heap space.

Immutable Attribute. An immutable attribute is a hidden attribute that has a getter, but no setter. This
implies that a user it not allowed to alter the value of this attribute. It is an important part of encapsulation.



6 CS 1110: FALL 2019

Implementation. An implementation is a collection of Python code for a function, module, or class)
that satisfies a specification. This code may be changed at any time as long as it continues to satisfy the
specification.

In the case of a function, the implementation is limited to the function body. In the case of a class,
the implementation includes the bodies of all methods as well as any hidden attributes or methods. The
implementation for a module is similar to that of a class.

Inheritance. Inheritance is the process by which an object can have a method or attribute even if that
method or attribute was not explicitly mentioned in the class definition. If the class is a subclass, then any
method or attribute is inherited from the superclass.

Interface. The interface is the information that another user needs to know to use a Python feature, such
as a function, module, or class. The simplest definition for this is any information displayed by the help()
function.

For a function, the interface is typically the specification and the function header. For a class, the interface
is typically the class specification as well as the list of all unhidden methods and their specifications. The
interface for a module is similar to that of a class.

Invariant. An invariant is a statement about an attribute that must always be true. It can be like a
precondition, in that prevents certain types of values from being assigned to the attribute. It can also be a
relationship between multiple attributes, requiring that when one attribute is altered, the other attributes
must be altered to match.

is. The is operator works like == except that it compares folder names, not contents. The meaning of the
operator is can never be changed. This is different from ==, whose meaning is determined by the special
operator method __eq__. If == is used on an object that does not have a definition for method __eq__, then
== and is are the same.

Method. Methods are functions that are stored inside of an class folder. They are defined just like a
function is defined, except that they are (indented) inside-of a class defintion.

Example method toSeconds() :

class Time(object):
def toSeconds(self):

"""Returns minutes, hours as seconds"""
return 60*self.hours+self.minutes

Methods are called by placing the object variable and a dot before the function name. The object before
the dot is passed to the method definition as the argument self. Hence all method definitions must have at
least one parameter.

Example: If t is a time object, then we call the method defined above with the syntax t.toSeconds(). The
object t is passed to self.



PREPARING FOR PRELIM 2 7

Mutable Attribute. An mutable attribute is a hidden attribute that has both a getter and a setter. This
implies that a user it allowed to alter the value of this attribute, provide that the invariant is not violated.
It is an important part of encapsulation.

Object. An object is a value whose type is a class. Objects typically contain attributes, which are variables
inside of the object which can potentially be modified. In addition, objects often have methods, which are
functions that are stored inside of the object.

Operator Overloading. Operator overloading is the means by which Python evaluates the various operator
symbols, such as +, *, /, and the like. The name refers to the fact that an operator can have many different
“meanings” and the correct meaning depends on the type of the objects involved.

In this case, Python looks at the class or type of the object on the left. If it is a built-in type, it uses the
built-in meaning for that type. Otherwise, it looks for the associated special method (beginning and ending
with double underscores) in the class definition.

Overriding a Method. In a subclass, one can redefine a method that was defined in a superclass. This
is called overriding the method. In general, the overriding method is called. To call an overridden method
method of the superclass, use the notation

super().method(...)

If you want to access the method in a class other than the immediate parent, use

super(self,<childclass>).method(...)

where <childclass> is the immediate child of the class you want to access.

Setter. A setter is a special method that can change the value of an instance attribute (of the same name)
when called. The purpose of the setter is to enforce any invariants. The docstring of the setter typically
mentions the invariants as a precondition.

Example: If _minutes is an instance attribute in class Time, then the setter would be

class Time(object):
def setMinutes(self,value):

"""Set _minutes attribute to value

Precondition: value is int in range 0..59"""
assert type(value) == int assert 0 <= value and value < 60 self._minutes = value

Subclass. A subclass D is a class that extends another class C. This means that an instance of D inherits
(has) all the attributes and methods that an instance of C has, in addition to the ones declared in D. In
Python, every user-defined class must extend some other class. If you do not explicitly wish to extend
another class, you should extend the built-in class called object (not to be confused with an object, which
is an instance of a class). The built-in class object provides all of the special methods that begin and end
with double underscores.



8 CS 1110: FALL 2019

Try-Except Statement (Limited). A limited try-except statement is a try-except that only recovers for
certain types of errors. It has the form

try:
<statements>

except <error-class>:
<statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it checks to see if the error object generated has class <error-class>. If so, it jumps over to except, where
it executes all the statements underneath there. Otherwise, the error propagates up the call stack where it
might recover in another except statement or not at all.

Example:
try:

print('A')
x = 1/0 print('B')

except ZeroDivisionError:

print('C')

This code prints out 'A', but crashes when it divides 1/0. It skips over the remainder of the try (so it does
not print out 'B'). Since the error is indeed a ZeroDivisionError, it jumps to the except and prints out
'C'.

Suppose, on the other hand, the try-except had been
try:

print('A')
x = 1/0 print('B')

except AssertionError:

print('C')

In this case, the code prints out 'A', but crashes when it divides 1/0 and does not recover.


	1. Exam Information
	Review Session

	2. Content of the Exam
	Recursion
	Iteration
	Classes
	Diagramming Objects
	Short Answer

	3. Terminology and Important Concepts
	Abstraction
	Accumulator
	Attribute
	Bottom-Up Rule
	Class
	Class definition
	Constructor
	Default Argument
	Duck Typing
	Encapsulation
	Getter
	Global Space
	The Heap
	Immutable Attribute
	Implementation
	Inheritance
	Interface
	Invariant
	is
	Method
	Mutable Attribute
	Object
	Operator Overloading
	Overriding a Method
	Setter
	Subclass
	Try-Except Statement (Limited)


