
Sequence Algorithms

Review 7

Three Types of Questions

• Write body of a loop to satisfy a given invariant.
§ Problem 6, Spring 2014 (Final)

• Given an invariant with code, identify all errors.
§ Problem 6, Spring 2014 (Prelim 2)
§ Problem 6, Spring 2013 (Final)

• Given an example, rewrite it with new invariant.
§ Problem 8, Fall 2014 (Final)
§ Problem 7, Fall 2018 (Final)

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b
0 h k

h h+1

(h+1) – h = 1

b <= sorted >=
0 k len(b)

• DON’T put variables directly above vertical line.

§ Where is j?
§ Is it unknown or >= x?

DOs and DON’Ts #3

<= x x ? >= x
h i j k

b

Algorithm Inputs

• We may specify that the list in the algorithm is
§ b[0..len(b)-1] or
§ a segment b[h..k] or
§ a segment b[m..n-1]

• Work with whatever is given!

• Remember formula for # of values in an array segment
§ Following – First
§ e.g. the number of values in b[h..k] is k+1–h.

?
h k

b

Three Types of Questions

• Write body of a loop to satisfy a given invariant.
§ Problem 6, Spring 2014 (Final)

• Given an invariant with code, identify all errors.
§ Problem 6, Spring 2014 (Prelim 2)
§ Problem 6, Spring 2013 (Final)

• Given an example, rewrite it with new invariant.
§ Problem 8, Fall 2014 (Final)
§ Problem 7, Fall 2018 (Final)

Exercise 6, Spring 2014 Final

• Example:
• Input s1 = 'abracadabra', s2 = 'abc'
• Output 'abacaabardr' (or 'aaaabbcrdr')

Elements of string s1
0 len(b)

pre: b

0 j len(b)
post: b Elements in s2 Elements not in s2

inv: b
0 i j len(b)

Elts in s2 Elts not in s2???

Solution to Spring 2014 Final
convert to a list b
b = list(s1)
initialize counters

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2
while :

post: b[0..j] in s2; b[i+1..n-1] not in s2
convert b back to a string

Solution to Spring 2014 Final
convert to a list b
b = list(s1)
initialize counters
i = 0
j = len(b) - 1
inv: b[0..i-1] in s2; b[j+1..n-1] not in s2
while :

post: b[0..j] in s2; b[i+1..n-1] not in s2
convert b back to a string

Inv:
0 i j len(b)

Elts in s2 Elts not in s2???

Solution to Spring 2014 Final
convert to a list b
b = list(s1)
initialize counters
i = 0
j = len(b) - 1
inv: b[0..i-1] in s2; b[j+1..n-1] not in s2
while j != i - 1:

post: b[0..j] in s2; b[i+1..n-1] not in s2
convert b back to a string

Inv:
0 i j len(b)

Elts in s2 Elts not in s2???

Solution to Spring 2014 Final
convert to a list b
b = list(s1)
initialize counters
i = 0
j = len(b) - 1
inv: b[0..i-1] in s2; b[j+1..n-1] not in s2
while j != i - 1:

if b[i] in s2:
i = i + 1

else:
b[i], b[j] = b[j], b[i] # Fancy swap syntax in python
j = j – 1

post: b[0..j] in s2; b[i+1..n-1] not in s2
convert b back to a string

Inv:
0 i j len(b)

Elts in s2 Elts not in s2???

Solution to Spring 2014 Final
convert to a list b
b = list(s1)
initialize counters
i = 0
j = len(b) - 1
inv: b[0..i-1] in s2; b[j+1..n-1] not in s2
while j != i - 1:

if b[i] in s2:
i = i + 1

else:
b[i], b[j] = b[j], b[i] # Fancy swap syntax in python
j = j – 1

post: b[0..j] in s2; b[i+1..n-1] not in s2
convert b back to a string
result = ''.join(b)

Inv:
0 i j len(b)

Elts in s2 Elts not in s2???

Three Types of Questions

• Write body of a loop to satisfy a given invariant.
§ Problem 6, Spring 2014 (Final)

• Given an invariant with code, identify all errors.
§ Problem 6, Spring 2014 (Prelim 2)
§ Problem 6, Spring 2013 (Final)

• Given an example, rewrite it with new invariant.
§ Problem 8, Fall 2014 (Final)
§ Problem 7, Fall 2018 (Final)

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
i = 1
k = len(b)
inv: b[0..i-1] <= z and b[k..] > z
while i != k:

if b[i] <= z:
i = i + 1

else:
k = k–1
b[i], b[k] = b[k], b[i] # python swap

post: b[0..k-1] <= z and b[k..] > z
return k

<= z
0 i k len(b)

inv: b >= z???

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
i = 1 i = 0
k = len(b)
inv: b[0..i-1] <= z and b[k..] > z
while i != k:

if b[i] <= z:
i = i + 1

else:
k = k–1
b[i], b[k] = b[k], b[i] # python swap

post: b[0..k-1] <= z and b[k..] > z
return k

<= z
0 i k len(b)

inv: b >= z???

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
i = -1
k = len(b)
inv: b[0..i] <= z and b[k..] > z
while i != k:

if b[i+1] <= z:
i = i + 1

else:
b[i+1], b[k–1] = b[k–1], b[i+1] # python swap
k = k–1

post: b[0..k-1] <= z and b[k..] > z
return k

<= z
0 i k len(b)

inv: b >= z???

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
i = -1
k = len(b)
inv: b[0..i] <= z and b[k..] > z
while i != k: i != k–1:

if b[i+1] <= z:
i = i + 1

else:
b[i+1], b[k–1] = b[k–1], b[i+1] # python swap
k = k–1

post: b[0..k-1] <= z and b[k..] > z
return k

<= z
0 i k len(b)

inv: b >= z???

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3.
Precondition: len(s) >= 1"""
i = 1
n = 1 if s[0] == ' ' else 0
inv: s[0..i] contains n runs of spaces
while i != len(s):

if s[i] == ' ' and s[i-1] != ' ':
n = n+1

i = i+1
post: s[0..len(s)-1] contains n runs of spaces return n
return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3.
Precondition: len(s) >= 1"""
i = 1 i = 0
n = 1 if s[0] == ' ' else 0
inv: s[0..i] contains n runs of spaces
while i != len(s):

if s[i] == ' ' and s[i-1] != ' ':
n = n+1

i = i+1
post: s[0..len(s)-1] contains n runs of spaces return n
return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3.
Precondition: len(s) >= 1"""
i = 1 i = 0
n = 1 if s[0] == ' ' else 0
inv: s[0..i] contains n runs of spaces
while i != len(s): i != len(s)–1

if s[i] == ' ' and s[i-1] != ' ':
n = n+1

i = i+1
post: s[0..len(s)-1] contains n runs of spaces return n
return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3.
Precondition: len(s) >= 1"""
i = 1 i = 0
n = 1 if s[0] == ' ' else 0
inv: s[0..i] contains n runs of spaces
while i != len(s): i != len(s)–1

if s[i] == ' ' and s[i-1] != ' ': s[i+1] == ' ' and s[i] != ' ':
n = n+1

i = i+1
post: s[0..len(s)-1] contains n runs of spaces return n
return n

Three Types of Questions

• Write body of a loop to satisfy a given invariant.
§ Problem 6, Spring 2014 (Final)

• Given an invariant with code, identify all errors.
§ Problem 6, Spring 2014 (Prelim 2)
§ Problem 6, Spring 2013 (Final)

• Given an example, rewrite it with new invariant.
§ Problem 8, Fall 2014 (Final)
§ Problem 7, Fall 2018 (Final)

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j =
q =
inv: b[h..j–1] <= x = b[j] <= b[q+1..k]
while :

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j =
q =
inv: b[h..j–1] <= x = b[j] <= b[q+1..k]
while :

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j q k

inv: b x ??? >= x

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j = h
q = k
inv: b[h..j–1] <= x = b[j] <= b[q+1..k]
while j < q:

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j q k

inv: b x ??? >= x

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j = h
q = k
inv: b[h..j–1] <= x = b[j] <= b[q+1..k]
while j < q:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[q]
q=q–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j q k

inv: b x ??? >= x

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j =

m =
inv: b[h..j–1] <= x = b[j] <= b[j+1..m]
while :

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j = h

m = h
inv: b[h..j–1] <= x = b[j] <= b[j+1..m]
while :

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j m k

inv: b x >= x ???

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j = h

m = h
inv: b[h..j–1] <= x = b[j] <= b[j+1..m]
while m < k:

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j m k

inv: b x >= x ???

Partition Example
Make invariant true at start
j = h
t = k+1
inv: b[h..j–1] <= x = b[j] <= b[t..k]
while j < t–1:

if b[j+1] <= b[j]:
swap b[j] and b[j+1]
j = j+1

else:
swap b[j+1] and b[t-1]
t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start
j = h

m = h
inv: b[h..j–1] <= x = b[j] <= b[j+1..m]
while m < k:

if b[m+1] <= b[j]:
swap b[j] and b[m+1]
swap b[j+1] and b[m+1]
m = m+1; j=j+1

else:
m = m+1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x
h j t k

inv: b x ??? >= x <= x
h j m k

inv: b x >= x ???

What is Fair Game for this Question?

• Segregation (see Fall 2014 Final)
• Partition from Lab 13
• Dutch-National-Flag from Lab 13
• The non-recursive sorting algorithms

§ Insertion Sort (Lecture 27)
§ Selection Sort (Lecture 27)
§ But changing invariants changes helpers too

• Binary Search (Lectures 26 & 27)

Questions?

