
Classes and Subclasses

Review 2

Class Definition

class <name>(<superclass>):

"""Class specification"""

getters and setters

initializer (__init__)

definition of operators

definition of methods

anything else

• Every class must
extend something

• Mosts classes will
extended object

Class type to extend
(may need module name)

Attribute Invariants

• What are the attribute invariants below?
• Why are they there?

class Time(object):
"""A class for a time of day
Attribute hr: hour of the day,
Invariant: hr is an int in range 0..23
Attribute min: minute of the hour
Invariant: min is an int in range 0..59"""
…

Attribute Invariants

• Attribute invariants are important for programmer
§ Can look at them when writing methods
§ Any reader of the code will benefit as well

class Time(object):
"""A class for a time of day
Attribute hr: hour of the day,
Invariant: hr is an int in range 0..23
Attribute min: minute of the hour
Invariant: min is an int in range 0..59"""
…

Enforcing Invariants

• Attribute invariants are the purpose of constructors
• They initialize the attributes to satisfy invariants

class Time(object):
…
def __init__(self,t):

"""Initializes an instance with time t.
Param t is in minutes, in range 0..24*60-1"""
self.hr = t / 60
self.min = t % 60

• Without seeing the invariants, might write self.min = t

Enforcing Invariants

• Restrict attribute access
§ Make attributes hidden
§ Force access through

methods: getter & setter
• Getter: Read attribute

§ Just return attribute
• Setter: Change attribute

§ Checks that new value
satisfies the invariant

§ If so, changes attribute

class Time(object):
Instance Attributes:
_hr: an int in range 0..23
_min: an int in range 0..59

…
def getHour(self):

"""Returns: hour of the day"""
return self._hr

def setHour(self,value):
"""Sets hour to value"""
assert type(value) == int
assert value >= 0 and value <= 23
self._hr = value

Special Methods

• Start/end with underscores
§ __init__ for initializer

§ __str__ for str()

§ __repr__ for repr()

• Actually defined in object
§ You are overriding them

§ Many more of them

• For a complete list, see
http://docs.python.org/
reference/datamodel.html

class Point(object):
""”Class is a point in 3D space"""
…

def __init__(self,x=0,y=0,z=0):
"""Initializes a new Point"""
…

def __str__(self):
"""Returns string with contents""”
…

def __repr__(self):
"""Returns unambiguous string""”
…

Modified Question from Fall 2010

• An object of class Course (next slide) maintains a
course name, the instructors involved, and the list of
registered students, sometimes called the roster.
1. State the purpose of an initializer. Then complete the

body of the initializer of Course, fulfilling this purpose.

2. Complete the body of method add of Course

3. Complete the body of method __eq__ of Course. If you
write a loop, you do not need to give a loop invariant.

4. Complete the body of method __ne__ of Course.
Your implementation should be a single line.

Modified Question from Fall 2010
class Course(object):

""”Represents a course at Cornell.
Maintains the name of the course, list of netids
of registered students and netids of instructors.
Attr name: course name. a str
Attr instructors: instructor net-ids, a non-empty
list of strings
Attr roster: student net-ids, a (possibly empty)
list of strings"""

def __init__(self,name,b):
"”"Initializes name, instructors b, no students.
It must COPY b. Do not assign b to instructors.
Pre: name is a string, b is a nonemepty list"""
IMPLEMENT ME

def add(self,n):
"""If student with netID n is not in roster, add
student. Do nothing if student is already there.
Precondition: n is a valid netID."""
IMPLEMENT ME

def __eq__(self,ob):
"""Return True if ob is a Course with the same
name and same set of instructors as this;
otherwise return False"""
IMPLEMENT ME

def __ne__(self,ob):
"""Return False if ob is a Course with the same
name and same set of instructors as this;
otherwise return True"""
IMPLEMENT ME IN ONE LINE

Modified Question from Fall 2010

1. State the purpose of a initializer. Complete the body of
the constructor of Course, fulfilling this purpose.
§ The purpose is to initialize instance attributes so that the

invariants in the class are all satisfied.

def __init__(self,name,b):
"""Initializes name, instructors b, no students.
Pre: name is a string, b is a nonemepty list"""
self.name = name
self.instructors = b[:] # Copies b
self.roster = [] # Satisfy the invariant!

Modified Question from Fall 2010

2. Complete the body of method add of Course
def add(self,n):

"""If student with netID n is not in roster, add
student. Do nothing if student is already there.
Precondition: n is a valid netID."""
if not n in self.roster:

self.roster.append(n)

Modified Question from Fall 2010

3. Complete body of method __eq__ of Course.
def __eq__(self,ob):

"""Return True if ob is a Course with the same name and same
set of instructors as this; otherwise return False"""
if not (isinstance(ob,Course)):

return False
Check if instructors in ob are in this
for inst in ob.instructors:

if not inst in self.instructors:
return False

If instructors of ob are those in self, same if length is same
return self.name==ob.name and len(self.instructors)==len(ob.instructors)

Modified Question from Fall 2010

4. Complete body of method __ne__ of Course.
Your implementation should be a single line.

def __ne__(self,ob):
"""Return False if ob is a Course with the same name and
same set of instructors as this; otherwise return True"""
IMPLEMENT ME IN ONE LINE
return not self == ob # Calls __eq__

Modified Question from Fall 2010

• An instance of Course always has a lecture, and it may
have a set of recitation or lab sections, as does CS 1110.
Students register in the lecture and in a section (if there
are sections). For this we have two other classes:
Lecture and Section. We show only components that
are of interest for this question

• Do the following:
§ Complete the constructor in class Section
§ Complete the method add in Section

• Make sure invariants are enforced at all times

Modified Question from Fall 2010
class Lecture(Course):

"""Class is a lecture, with list of sections
Attr seclist: sections associated with lecture.
Inv: seclist is list of Section; can be empty

"""

def __init__(self, n, ls):
"""Initialize name, instructors ls, no students.
It must COPY ls. Do not assign ls to instructors.
Pre: name is a string, ls is a nonemepty list"""
super().__init__(n, ls)
self.seclist = []

class Section(Course):
""”Class is a section associated w/ a lecture""”

Attr mainlecture: lecture associated w/ this.
Inv: is a Lecture; should not be None"""

def __init__(self, n, ls, lec):
""”Initialize name, instructors ls, no
students AND primary lecture lec.
Pre: name a string, ls list, lec a Lecture"""
IMPLEMENT ME

def add(self,n):
"""If student with netID n is not in roster of
section, add student to this section AND the
main lecture. Do nothing if already there.
Precondition: n is a valid netID."""
IMPLEMENT ME

Modified Question from Fall 2010

def __init__(self, n, ls, lec):
"""Initialize name, instructors ls
no students AND main lecture lec.
Pre: name a string, ls list,
lec a Lecture"""
super().__init__(n,ls)
self.mainlecture = lec

def add(self,n):
"""If student with netID n is not in
roster of section, add student to
this section AND the main lecture.
Do nothing if already there.
Precondition: n is a valid netID."""
Calls old version of add to
add to roster
super().add(self,n)
Add to lecture roster
self.mainlecture.add(n)

Diagramming Subclasses

Important Details:
§ Draw a line from subclass

to the parent class
§ Do not duplicate inherited

methods and attributes
§ Include initializer and

operators with methods
§ Method parameters are

always optional
§ Class attributes are a box

with (current) value

superclass-name

Declared in Superclass:
Class Attributes
Method Names

subclass-name

Declared in Subclass:
Class Attributes
Method Names

Example: Class Point

object

__init__(self)
__str__(self)
….

Point(object)

__init__(self,x=0.0,y=0.0,z=0.0)
__str__(self,)
distanceTo(self,q)

id1

x 0.0

Point

y 0.0

z 0.0

Supports the
default constructor

Default str()
behavior

Override original
methods in object

Object Folder

Class Folders

Example: Class Point

object

__init__(self)
__str__(self)
….

Point(object)

__init__(self,x=0.0,y=0.0,z=0.0)
__str__(self,)
distanceTo(self,q)

id1

x 0.0

Point

y 0.0

z 0.0

Class Folders

Because it is always
there, typically omit

the object folder

Two Example Classes
class A(object):

x=3
y=5
def __init__(self,y):

self.y = y

def f(self):
return self.g()

def g(self):
return self.x+self.y

class B(A):
y=4
z=10
def __init__(self,x,y):

self.x = x
self.y = y

def g(self):
return self.x+self.z

def h(self):
return 42

Execute:
>>> a = A(1)
>>> b = B(7,3)

Example from Fall 2013

A

__init__(self,y)
f(self)
g(self)

B

x 3

y 5

__init__(self,x,y)
h(self)
g(self)

y 4

z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

Execute:
>>> a = A(1)
>>> b = B(7,3)

Example from Fall 2013

A

__init__(self,y)
f(self)
g(self)

B

x 3

y 5

__init__(self,x,y)
h(self)
g(self)

y 4

z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.y 1 (2) a.z ERROR

(3) b.x 7 (4) B.x 3

Example from Fall 2013

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.y 1 (2) a.z ERROR

(3) b.x 7 (4) B.x 3

A

__init__(self,y)
f(self)
g(self)

B

x 3

y 5

__init__(self,x,y)
h(self)
g(self)

y 4

z 10

Example from Fall 2013

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.f() 4 (2) a.h() ERROR

(3) b.f() 17 X (4) b.g() 17

A

__init__(self,y)
f(self)
g(self)

B

x 3

y 5

__init__(self,x,y)
h(self)
g(self)

y 4

z 10

Example from Fall 2013

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.f() 4 (2) a.h() ERROR

(3) b.f() 17 X (4) b.g() 10

A

__init__(self,y)
f(self)
g(self)

B

x 3

y 5

__init__(self,x,y)
h(self)
g(self)

y 4

z 10

