

Lecture 16: More Recursion!

CS 1110 Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Recursion

Recursive Function: A function that calls itself (directly or indirectly)

Recursive Definition: A definition that is defined in terms of itself

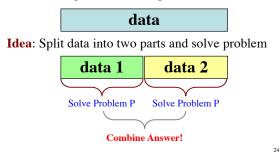
A Mathematical Example: Factorial

Non-recursive definition:

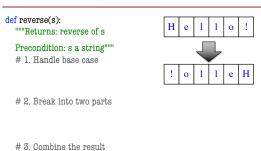
 $n! = n \times n-1 \times \dots \times 2 \times 1$ $= n (n-1 \times \dots \times 2 \times 1)$

Recursive definition:

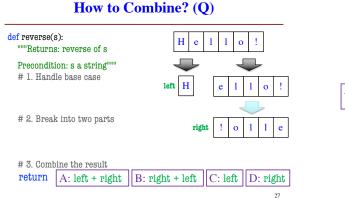
n! = n (n-1)!	for $n > 0$	Recursive case
0! = 1		Base case

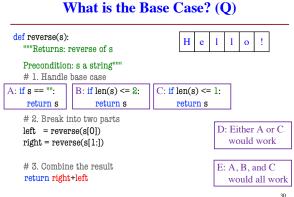

What happens if there is no base case?

What happens next? (Q)

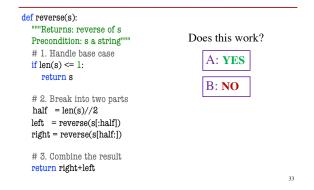

def factorial(n): """Returns: factorial of n. Pre: n ≥ 0 an int"" 1 if n == 0: 2 return 1 3 return n*factorial(n-1)	A: factorial , 3 n 3 factorial 1	B: factorial n 5 2 D:
Call: factorial(3)	n <mark>2</mark>	factorial
factorial 2,3 n 3	C: ERASE FRAME factorial 1 n 3	n 82 factorial 1 n 2

Recall: Divide and Conquer


Goal: Solve problem P on a piece of data



Example: Reversing a String



25

Alternate Implementation (Q)

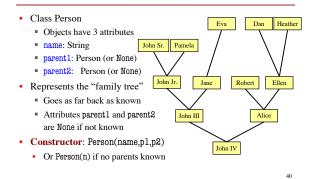
Example: Palindromes

• Example:

AMANAPLANACANALPANAMA

• Can we define recursively?

Example: Palindromes


- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form a palindrome
- Example:

have to be the same

38

- has to be a palindrome
 Implement: def ispalindrome(s):
 - ""Returns: True if s is a palindrome"""

Recursion and Objects

37