
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Regular Prelim 1, March 14th, 2017

This 90-minute exam has 9 questions worth a total of 104 points. You may tear the pages apart;
we have a stapler at the front of the room.

The second page of this exam gives you the specifications for some useful functions and methods.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():

if something:

do something

do more things

do something last

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.
We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.
Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date



Last Name: First Name: Cornell NetID:

For reference:
s.find(substr) Returns: index of first occurrence of string substr in string s (-1 if not

found)

s.strip() Returns: copy of string s where all whitespace has been removed from the
beginning and the end of s. Whitespace not at the ends is preserved.

s.split(sep) Returns: a list of the “words” in string s, using sep as the word delimiter
(whitespace if sep not given)

s.join(slist) Returns: a string that is the concatenation of the strings in list slist

separated by string s

s[i:j] Returns: if i and j are non-negative indices and i ≤ j-1, a new string
containing the characters in s from index i to index j-1, or the substring
of s starting at i if j ≥ len(s)

lt.append(item) Adds item to the end of list lt

lt.remove(item) Removes the first occurrence of item from list lt.

lt.index(item) Returns: index of first occurrence of item in list lt; raises an error if item
is not found. (There’s no “find” for lists.)

lt[i:j] Returns: A new list[lt[i], lt[i+1], . . ., lt[j-1]] under ordinary cir-
cumstances. Returns [] if i and j are not both sensible indices

lt.pop(i) Returns: element of list lt at index i and also removes that element
from the list.

map(func, lt) Returns: A list obtained by applying function func to each element in list
lt and concatenating all of the results.

Question Points Score

1 17

2 16

3 10

4 16

5 7

6 17

7 10

8 10

9 1

Total: 104

Page 2



Last Name: First Name: Cornell NetID:

1. Object Diagramming and Terminology.

(a) [8 points] Suppose there is a class Acct defined in file a2.py where Acct objects have a
balance attribute. Consider the following code and associated memory diagrams. Eight
items in the diagram have been labeled (A) through (H). Match the vocabulary terms
below the diagram with a labeled example by writing a letter next to each term.

1 from a2 import *

2 def swap(source, to):

3 """Swap balance of Acct <source> and balance of Acct <to>"""

4 tmp = source.balance

5 source.balance = to.balance

6 to.balance = tmp

7
8 a1 = Acct(50)

9 a2 = Acct(25)

10 swap(a1,a2)

Acct
id1

Acct

balance 50  25

id2

id1a1 

id2a2 
balance 25  50

swap 4 5 6

id1source id2to

50tmp NoneRETURN

A

D

E

F

C

H

B

G

Local Variable: Global Variable: Parameter: Attribute:

Object: Call Frame: Heap Space: Global Space:

Page 3



Last Name: First Name: Cornell NetID:

(b) [9 points] Consider the following 6 lines entered in Python interactive mode. Diagram all
variables and objects created at the end of execution. Do not diagram any call frames.

>>> x = 1

>>> y = x

>>> x = 2

>>> p = [1,2]

>>> q = p

>>> p[1] = 5

Page 4



Last Name: First Name: Cornell NetID:

2. String processing, testing.

In the US, 10-digit telephone numbers are typically represented in one of the two following
styles:

“Parenthetical”: (555) 666-1110
“Dashed”: 555-666-1110

There is no whitespace in a Dashed phone number: they are all exactly 12 characters long.

There is only one space in a Parenthetical phone number, and it is after the “)”; they are
all exactly 14 characters long, counting the space.

(a) [10 points] Implement the following function according to its specification.

def phone_to_paren(s):

""" Returns: a string representing the phone number s in Parenthetical form.

Precondition: s is a non-empty string that *would* be a valid Dashed phone number

EXCEPT that it possibly has spaces around the dashes.

Examples: '555-666-1110'
'555 - 666 - 1110'
'555 - 666-1110'
... all yield the same result, '(555) 666-1110' """

Page 5



Last Name: First Name: Cornell NetID:

(b) [6 points] Consider the following function specification.

def area_code(s):

""" Returns: an int representing the area code (first three digits)

of a telephone number in string s.

Precondition: s is a non-empty string that *would* be a valid Dashed or

Parenthetical phone number, EXCEPT it possibly has spaces around the dashes."""

Write three conceptually distinct test cases for this function in the table below.

Test case #1
Input and expected output:

Rationale:

Test case #2
Input and expected output:

Rationale:

Test case #3
Input and expected output:

Rationale:

Page 6



Last Name: First Name: Cornell NetID:

3. [10 points] Time for Objects! The Time class is defined so that Time objects have two
attributes, hours and minutes.

Write the body for the function below so that it implements its specification.

You may assume it is being defined in the same file as the definition for Time, so that you can
create a new Time object with, say, 1 hour 30 minutes via the call Time(1,30).

def mirror_time(t):

"""Modifies Time object t to be its "mirror image" on the clock.

Does NOT create a new object; does not return a value.

To get a "mirror image" time:

1. If the hours are 12, then the hours should stay the same.

Otherwise, take 12 and subtract the hours to get the new hours.

2. If the minutes are 0, then the minutes should stay the same.

Otherwise, take 60 and subtract the minutes to get the new minutes.

Examples: 10:10 -> 2:50

12:00 -> 12:00

4:30 -> 8:30

Precondition: t is a Time object with hours <= 12, minutes <= 59 """.

Page 7



Last Name: First Name: Cornell NetID:

4. [16 points] Banking on objects. Suppose you are working on a file that defines two classes:

• Acct: Acct objects have a float attribute, balance

• Person: Person objects have two attributes:

– partner, which is either a Person object or None

– bank_acct, which is an Acct object.

Inside the same file that defines the classes Acct and Person is also the following function header
and specification. Write the body of the function so that it implements its specification.

def groupem(p1, p2):

""" 1. Creates a new Acct whose balance is the sum of the balances of

p1 and p2's bank_acct objects;

2. Changes the balances of both p1's bank_acct and p2's bank_acct to 0

3. Changes both p1's bank_acct and p2's bank_acct to the new Acct

4. Makes the partner of p1 be p2 and the partner of p2 be p1.

Preconditions: p1 and p2 are Persons whose partners are both None."""

# hint: if p1 is a Person, p1.bank_acct is an Acct. So you can write

# (p1.bank_acct).balance, or even p1.bank_acct.balance

Page 8



Last Name: First Name: Cornell NetID:

5. [7 points] The import of import. Suppose file andersen.py defines a function is_the_one

that takes a string as input, performs some computation, and returns a Boolean.

And, suppose file lee.py also defines a function is_the_one that takes a string as input, but
performs some possibly different computation, and returns a Boolean.

Finally, suppose you are writing code in a third file matrix.py, which is currently empty.

Write code to be placed in the third file that:

• stores in variable neo the result of calling the andersen.py version of is_the_one on the
string "Thomas"; and

• stores in variable oracle the result of calling the lee.py version of is_the_one on the
string "Thomas"

6. For-loop analysis. Consider the following function header and specification:

def vowel_in_common(s1,s2):

"""Let the vowels be defined as a, e, i, o, u.

If there is some vowel v contained in both s1 and s2, return a list

of the index of the first v in s1 and the index of the first v in s2.

If there is more than one such vowel v, v = the alphabetically first one.

If s1 and s2 have no vowel in common, return the list [-1, -1].

Preconditions: s1 and s2 are non-empty strings.

Examples:

vowel_in_common("brad", "angelina") -> [2, 0]

vowel_in_common("romeo", "romeo") -> [3, 3]

vowel_in_common("dan", "phil") -> [-1, -1]

"""

Page 9



Last Name: First Name: Cornell NetID:

Here is one proposed implementation of vowel in common. It may or may not be correct.

for v in ['a', 'e', 'i', 'o', 'u']:
i1 = s1.find(v)

i2 = s2.find(v)

if i1 != -1 and i2 != -1:

return [i1, i2]

else:

return [-1, -1]

(a) [6 points] Suppose someone makes the call

indices = vowel in common("brad", "angelina"),

What is the value of local variable v just before the function returns?

What is the return value of the call?

(b) [4 points] Suppose someone makes the call

indices = vowel in common("romeo", "romeo"),

What is the value of local variable v just before the function returns?

What is the return value of the call?

Page 10



Last Name: First Name: Cornell NetID:

(c) [7 points] Here is an alternative proposed implementation of vowel in common. It may or
may not be correct.

found = "" # first vowel found in both

for v in ['a', 'e', 'i', 'o', 'u']:
if v in s1 and v in s2 and found == "":

found = v

if v == "":

return [-1, -1]

else:

return [s1.index(v), s2.index(v)]

Suppose someone makes the call

indices = vowel in common("brad", "angelina"),

For the alternative implementation, what is the value of local variable v just before the
function returns?

What is the value of local variable found just before the function returns?

What is the return value of the call?

Page 11



Last Name: First Name: Cornell NetID:

7. [10 points] Lists. The Towers of Hanoi is a famous math puzzle that involves moving circular
disks (with a hole in the middle) from one tower to another. There are three towers: “left”,
“middle”, and “right”, and each disk has a unique size. The goal is to move all of the disks
from the left tower to the right tower without putting a larger disk on top of a smaller disk.

4
3
2
1

left middle right

The towers can be represented in Python as lists of integers. Each disk has its own unique
associated integer. The first element in the list represents the bottom of the tower, and the
last element represents the top. For example, the above setup could be represented as:

left = [4, 3, 2, 1]

middle = []

right = []

Below is the specification of a function move to move disks (integers) from one list to another.
For example, after executing the following code:

left = [4, 3, 2, 1]

middle = []

move(left, middle)

left should contain [4, 3, 2] and middle should contain [1].

def move(from_tower, to_tower):

'''Tries to move a disk from from_tower to to_tower. More specifically,

* if to_tower is empty, or if to_tower is not empty and its last element is

larger than the last element of from_tower, then removes the integer at the

end of from_tower and appends it to the end of to_tower.

* otherwise, does nothing.

Precondition: from_tower and to_tower are lists of integers representing

disks. from_tower has at least one disk. to_tower may be an empty list.

Procedure, not a fruitful function, so no return.'''

Implement this function on the next page.

Page 12



Last Name: First Name: Cornell NetID:

# Put your code for function move below.

Page 13



Last Name: First Name: Cornell NetID:

8. [10 points] String Processing. Write this function’s body so that it implements its specifi-
cation.

def glue(name1, stop1, name2, start2):

"""Returns:

-1 if stop1 is not a valid index for name1 or if

start2 is not a valid index for name2

Otherwise, returns a new string formed by concatenating:

the substring of name1 starting at index 0 and ending at index stop1

with

the substring of name2 starting at index start2 and going to the end

Preconditions:

name1 and name2 are non-empty strings of lowercase letters

stop1 and start2 are nonnegative ints

Examples:

glue("jules", 1, "vincent", 3) -> "jucent"

glue("jules", 4, "vincent", 4) -> "julesent"

glue("jules", 2, "vincent", 0) -> "julvincent",

glue("jules", 5, "vincent", 4) -> -1

glue("jules", 1, "vincent", 100) -> -1

"""

9. [1 point] Write your last name, first name, and Cornell NetID at the top of each page.

Did you write your name and netID on each page, and re-read all specs, and check your code
works against test cases?

Page 14


