
Last Name: First Name: Cornell NetID:

CS 1110 Final, Spring 2016

This 150-minute exam has 9 questions worth a total of 63 points. When permitted to begin, scan
the whole test before starting. Budget your time wisely.

When asked to write Python code on this exam, you may use any Python feature that you have
learned about in class.
There is a reference list of specifications for some common functions on the reverse of this page.

Unless otherwise stated, you may write helper functions when asked to write code, but include
specifications for them in their doc strings.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help. We also ask that you not discuss this exam with students who are
scheduled to take a later makeup.
Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

Question Points Score

1 8

2 5

3 5

4 17

5 3

6 6

7 7

8 6

9 6

Total: 63



Last Name: First Name: Cornell NetID:

For your reference:

int(s) Returns: the int that s represents. OK if s is “006”; error if s is “5.0”.

s[i:j] Returns: A new string s[i] s[i+1] . . . s[j-1] under ordinary circum-
stances. Returns '' if i ≥ len(s) or i ≥ j.

s.find(s1) Returns: index of the first character of the first occurrence of s1 in s, or
−1 if s1 does not occur in s.

s.index(s1) Like find, but raises an error if s1 is not found.

s.lower() Returns: a copy of s with all letters in it converted to lowercase.

s.count(s1) Returns: the number of non-overlapping appearances of string s1 in string
s.

x in y Returns: True if x is in list or string y, False otherwise.

lt[i:j] Returns: A new list[lt[i], lt[i+1], . . ., lt[j-1]] under ordinary
circumstances. Returns [] if i ≥ len(lt) or i ≥ j.

lt.index(item) Returns: index of first occurrence of item in list lt; raises an error if
item is not found.

lt.count(thing) Returns: the number of occurrences of item thing in list lt.

range(n) Returns: the list [0, 1, 2, ..., n-1]

range(a, b, step) Returns: the list [a, a+step, a+2*step, ... up to but not including
b.

lt.append(x) Append object x to the end of list lt.

lt1.extend(lt2) Concatenate the list lt2 to the end of list lt1.

lt.pop(i) Returns: item at position i in list lt, removing it from lt. If i is omitted,
returns and removes the last item.

lt.sort() Sort the items of lt, in place (the list is altered).
...

Page 2



Last Name: First Name: Cornell NetID:

1. (a) [3 points] Assume that the variables B1 and B2 are initialized and boolean-valued. Give
a Boolean-valued expression that is True if and only if exactly one of B1 and B2 is True

(i.e., one is True and the other is False). The expression should be False otherwise.

(b) [1 point] What is the value of 6*float(10/6)/10?

(c) [4 points] Consider the following code:

x = [10,20]

y = [30,40]

temp = x

x = y

y = temp

print x[0], x[1]

print y[0], y[1]

print temp[0], temp[1]

z = x[0]

print z

What is the output? (If an error results, describe what the error is).

Page 3



Last Name: First Name: Cornell NetID:

2. [5 points] Assume that x is a list of int values and that it has even length. We say that y is
the even-odd swap of x if it has the same length as x and for all valid indices k that are even,

y[k]==x[k+1] and y[k+1]==x[k]

is True. Thus, if

x = [30,50,70,90,60,40]

then

[50,30,90,70,40,60]

is the even-odd swap of x. Complete the following function so that it performs as specified.

def EvenOddSwap(x):

""" Returns a list that is the even-odd swap of x. Does not change x.

PreC: x is a list with int values and its length is even and non-zero."""

Page 4



Last Name: First Name: Cornell NetID:

3. [5 points] A time stamp string is a length-5 string of the form 'xx:yy' where the first two
characters encode the hours,

'00' '01' '02' ... '22' '23'

and the last two characters encode the minutes,

'00' '01' '02' ... '58' '59'

Complete the following function so that it performs as specified.

def NewDay(t,additional_minutes):

""" Returns True if current time plus additional_minutes occurs on a

different day as the current time.

PreC: t is a time stamp string that represents the current time.

additional_minutes is a positive int that represents an elapsed time in minutes.

"""

Hint: The number of minutes in a day is 60*24.

Examples:

NewDay("01:13", 1500) is True

NewDay("01:13", 42) is False

NewDay("23:55", 5) is True

NewDay("23:55", 4) is False

Page 5



Last Name: First Name: Cornell NetID:

4. This problem is about determining whether or not a request for a make-up final exam is
legitimate at a Certain University (CU) where final exam “slots” are consecutively indexed.
Assume the availability of the following two functions:

def time_to_slot():

""" Returns a dictionary whose keys are strings and whose values are ints.

Each key encodes an exam time and the corresponding value is its exam slot index.

The length n of the returned dictionary equals the total number of exam slots and

these are indexed from 1 to n."""

def course_to_slot():

""" Returns a dictionary whose keys are strings and whose values are ints.

Each key encodes a course name and the corresponding value is its exam slot index.

The length of the returned dictionary equals the total number of courses that

have final exams."""

Here is an example of a dictionary that could be returned by time to slot:
{"5/18 7pm":1, "5/19 9am":2, "5/19 2pm":3, "5/19 7pm":4, "5/20 9am":5}

If s in time to slot() is True, then we say s is a valid exam-period string.

Here is an example of a dictionary that could be returned by class to slot:
{"CS1110":1, "MATH1920":2, "ENGL2800":5, "HADM4300":3, "IS6000":2, "ILR2100":4}

If s in course to slot() is True, then we say s is a valid course-with-final string.

(a) [5 points] Implement the following function so that it performs as specified.

def valid(p_item):

"""Returns True if p_item[0] is a valid class-with-final string,

p_item[1] is a valid exam-period string, and the exam period

index associated with p_index[0] is the same as the exam period

index associated with p_index[1]. Returns False otherwise.

PreC: p_item is a length-2 list of strings"""

Page 6



Last Name: First Name: Cornell NetID:

(b) [12 points] A petition list is a list whose items are length-2 lists of strings, e.g.,

[["CS1110", "5/18 7pm"], ["HADM4300", "5/19 7pm"], ["CS1112", "5/18 7pm"]]

A petition list P is valid if valid(P[k]) is True for all valid k.

A valid petition list P is make-up free if the exam period indices associated with the P[k]

are distinct and no three of them are consecutive.

To illustrate, suppose P is a valid length-6 petition list and that

x = [10,8,7,4,6,1]

is a list of ints with the property that x[k] is the exam period index associated with
P[k]. In this case P would not be make-up free because we can find a consecutive triple:
6,7,8. It is easy to look for repeats and consecutive triples if x is sorted:

x = [1,4,6,7,8,10]

Complete the following function so that it performs as specified:

def isMakeUpFree(P):

""" Returns True if P is a valid Petition list that is make-up free.

Returns False otherwise. Does not alter P

PreC: P is a petition list"""

You must make effective use of function valid from the previous page. (Assume it’s
correct.)

(You can use part of the next page if you need more space.)

Page 7



Last Name: First Name: Cornell NetID:

(More space.)

5. [3 points] When you write an integer x in base-10 notation, the third digit from the right is the
hundreds place. (If x < 100 then the hundreds place digit is zero.) Here are some examples:

Integer The Hundreds-Place Digit

623 6
9892 8
7092 0

23 0
6 0

Complete the following function so that it performs as specified:

def hundreds_digit(x):

""" Returns an int that is the value of the hundreds place (0 if x<100).

PreC: x is a positive int

"""

Page 8



Last Name: First Name: Cornell NetID:

6. Assume the availability of a class Point with float attributes x and y for the x and y coordinates,
respectively, and the following methods:

def __init__(self,x,y):

""" Creates a Point."""

def Dist(self,other):

""" Returns a float that is the distance from self to Point other."""

def RandomNeighbor(self):

""" Returns a random Point that has distance <= 2 from self"""

(a) [2 points] The following code simulates a toy robot that starts at (0,0) and randomly
“hops” from point to point in the plane.

P = Point(0,0)

Z = P

t = 0

while P.Dist(Z)<=100 and t<100000:

P = P.RandomNeighbor()

t+=1

Is it possible that just after the above code finishes, t is less than 100000? Explain your
answer in 1-3 sentences.

(b) [4 points] Suppose when the robot makes a hop from point p to a point more than distance
1 away from p, your little sibling pulls the robot back to p. Write code that simulates this
process for the robot starting at (0,0) and attempting 100 hops.

Page 9



Last Name: First Name: Cornell NetID:

7. Consider the following class definition.

class Person(object):

"""name this Person's name [non-empty string]

fav this Person's favorite Person [Person or None]"""

def __init__(self, n):

"""Initialize a new Person with name n and fav set to None.

(Nobody has a favorite person when they first come into existence.)

PreC: n is a non-empty string."""

self.name = n

self.fav = None

def make_fav(self, p):

"""Changes this Person's favorite person to p. (Doesn't return anything.)

PreC: p is a Person or None". """

(The implementation of make fav is not important.) Note that the fav attribute of a Person

is NOT a string.

(a) [4 points] Implement the following method for Person so that it performs as specified.

def __str__(self):

"""Returns a string so that if p is a Person with a favorite person,

then the string looks like this:

Lady Macbeth has favorite person Macbeth

If there is no favorite person, then the string looks like this:

Macbeth has no favorite person """

Page 10



Last Name: First Name: Cornell NetID:

(b) [3 points] Implement the following function so that it performs as specified. Your imple-
mentation must make effective use of method make_fav.

def make_couple(n1, n2):

"""Returns a list of two new Persons where the first one's name is n1,

the second one's name is n2, the first Person's favorite Person is

the second, and the second Person's favorite Person is the first.

PreC: n1, n2 are non-empty strings."""

Page 11



Last Name: First Name: Cornell NetID:

8. [6 points] Assume the existence of a function expand that takes a non-empty string s as input,
and, if s has length ell, returns s[0]*ell + s[1]*ell + s[2]*ell + ... + s[ell-1]*ell.
Examples:

expand('ab') is 'aabb' expand('abc') is 'aaabbbccc' expand('aa') is 'aaaa'

Then, consider the following function, which is implemented recursively.

def spawn(s, n):

"""If n is 0, returns s. Otherwise, returns the result of applying function

expand to s n times. Example: spawn('ab',2) is 'aaaaaaaabbbbbbbb'.

PreC: s is a non-empty string, n is a non-negative int."""

if n == 0:

return s

else:

__________________________________________________

Here are three alternatives for the ”else” line (assuming proper indentation):

1. return expand(spawn(s, n-1))

2. return spawn(expand(s), n-1)

3. return spawn(s, n-1) + expand(s)

State which (if any) alternatives constitute a correct solution and which (if any) don’t.

Furthermore, for each that is incorrect (if any), either (1) give an example s and n and the
corresponding output of spawn showing it computes the wrong answer, or (2) if an error results,
state what the error is.

Page 12



Last Name: First Name: Cornell NetID:

9. [6 points] These classes were involved in Assignment 6:

class Speech(object):

"""

attributes:

theSpeaker the name of the speaker [str]

lines each item is a (file) line in the speech [list of str]

"""

class Play(object):

"""

attributes:

theTitle the name of the play [str]

theSpeeches a list of all the speeches in the play [list(Speech)]

theScenes a list of all the scenes in the play [list(Scene)]

nLines the total number of lines in the play [int]

"""

Implement the following function so it performs as specified.

def AllTheLines(P,A):

""" Returns a list of strings each of which is a line from the play

that is represented by P and each of which is spoken by the speaker

whose name is A. All the lines spoken by A are encoded in the list that

is returned.

PreC: P is a play and A is a string

"""

We suggest you carefully re-read all instructions and specifications before turning this exam in.
Have a great summer!

Page 13


