
Last Name: First: Netid: Section

CS 1110 Final, December 8th, 2016

This 150-minute exam has 8 questions worth a total of 100 points. Scan the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may tear
the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

Unless you are explicitly directed otherwise, you may use anything you have learned in this course.

Question Points Score

1 2

2 10

3 16

4 14

5 14

6 14

7 14

8 16

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, netid, and lab section at the top of each page.

Last Name: First: Netid: Section

Throughout this exam, there are several questions on sequences (strings and lists). All sequences
support slicing. In addition, you may find the following sequence expressions below useful
(though not all of them are necessary).

Expression Description
len(s) Returns: number of elements in sequence s; it can be 0.
x in s Returns: True if x is an element of sequence s; False otherwise.
s.index(x) Returns: index of the FIRST occurrence of x in s.

Raises a ValueError if x is not found.
x.append(a) (Lists Only) Adds a to the end of list x, increasing length by 1.
x.remove(a) (Lists Only) Removes first occurrence of a in x, decreasing length by 1.
x.extend(y) (Lists Only) Appends each element in t to the end of list x, in order.
x.insert(i,y) (Lists Only) Inserts y at position i in list x.

Elements after position i are shifted to the right.

2. [10 points total] Short Answer

(a) [3 points] What is a parameter? What is an argument? How are they related?
A parameter is a variable in the parentheses at the start of a function definition.
An argument is an expression in the parentheses of a function call.
A function call evaluates the arguments and plugs the result into the parameters before
executing the function body.

(b) [3 points] What is a watch? What is a trace? What purpose do they serve?
A watch is a print statement used to display the contents of a variable.
A trace is a print statement used to visualize program flow.
Both are useful in debugging code.

(c) [4 points] In the code below, you are given variables x and n. You can assume that they
have already been initialized so that the initial assertion is true. Add code so that the later
assertions are true (you may not reassign the variable n).

Assertion: x is the sum of all odd numbers in 1..n
n = n + 1
if n % 2 == 1:

x = x + n

Assertion: x is the sum of all odd numbers in 1..n
n = n - 1
if (n+1) % 2 == 1:

x = x - (n+1)

Assertion: x is the sum of all odd numbers in 1..n

Page 2

Last Name: First: Netid: Section

3. [16 points] Classes and Subclasses

The very first step in Assignment 7 was to make a welcome message with the class GLabel. As
you may recall, it has the following following primary attributes.

Attribute Invariant Description
x float x-coordinate of the label center.
y float y-coordinate of the label center.
text str The text to display.
linecolor colormodel.RGB The color for the text.
fillcolor colormodel.RGB The background color.

There are other attributes, such as width and height, but they are not important for this
question. In particular, width and height are computed automatically from the text.

GLabel is a very useful class and is often the subclass of more interesting classes. In this
problem, you are to make a GButton, which provides support for a clickable button. GLabel
already has a method contains to help us determine if it was touched, so the GButton class
simply adds a new attribute indicating whether or not it is pressed.

To make the button a little more interesting, we want
it to change color when we press it. The simplest way
to do this is to swap the linecolor and fillcolor of
a pressed button. This is shown to the right.
Putting this all together, the specification of this class is as follows.

class GButton(GLabel):

"""Instance is a clickable button.

(MUTABLE) ATTRIBUTES:
_pressed [bool]: whether the button is pressed
_visible [bool]: whether the button is visible

In addition, there is one more invariant. When _pressed is true, the
inherited attributes linecolor and fillcolor are swapped. They go back
to normal when _pressed is false"""

Implement this class on the next page. We have provided you with the specifications for the
methods __init__ and draw. You should fill in the missing details to meet these specifications.
In addition, you must add the getters and setters (where appropriate) for the new attributes.
Remember that setters must have preconditions to enforce the attribute invariants.
Hint: The attributes inherited from GLabel work like they do in Assignment 7, and have
invisible setters and getters. Therefore, you never have to enforce the invariants for these
attributes. You only need to worry about your two new attributes: _pressed and _visible.
In addition, you have the module colormodel at your disposal. If you cannot remember all of
the attributes of an RGB object, the module provides constants for colors such as RED, YELLOW,
GREEN, and BLACK. You may use these as you wish.

Page 3

Last Name: First: Netid: Section

from game2d import *
import colormodel # Note the difference in the imports

class GButton(GLabel):
"""See the specification on previous page."""
PUT THE GETTERS AND SETTERS HERE
def setPressed(self,value):

"""Sets the button state to value"""
assert type(value) == bool
if self._pressed != value:

temp = self.fillcolor
self.fillcolor = self.linecolor
self.linecolor = temp

self._pressed = value

def getPressed(self):
"""Returns true if the button is pressed"""
return self._pressed

def setVisible(self,value):
"""Sets whether the button is visible"""
assert type(value) == bool
self._visible = value

def getVisible(self):
"""Returns true if the button is visible"""
return self._visible

def __init__(self, x, y, text, shown=True): # FILL IN
"""Initializes a button with the given text centered at (x,y).

There are four parameters: x, y, text, and shown. The first three are
the same as for GLabel. The last parameter shown indicates if the button
is visible. It is OPTIONAL and defaults to True.
All buttons start with a fillcolor of black and a linecolor of green.
New buttons are not pressed.

Preconditions: x and y are floats, text is a str, shown is a bool."""
GLabel.__init__(self,x=x,y=y,text=text)
self.fillcolor = colormodel.BLACK
self.linecolor = colormodel.GREEN
self.setVisible(shown)
self._pressed = False

Page 4

Last Name: First: Netid: Section

Class GButton (CONTINUED).
def draw(self, view): # FILL IN

"""Draws this button to the provided view.

If the button is not visible, it does not draw anything. Otherwise, it
draws exactly the same way that its superclass does.

Precondition: view is a GView object"""

assert isinstance(view,GView)
if self._visible:

GLabel.draw(self,view)

4. [14 points total] Asserts and Error Handling

(a) [8 points] As you saw in Assignment 6, it is often handy to have a boolean function to
enforce preconditions of other functions. The function specified below is one such function.
Implement this function, assuming nothing about the argument value.
def is_sorted_int_list(value):

"""Returns: True if value is a nonempty, sorted list of only ints.

It returns False otherwise. It may not modify the contents of value.

Precondition: value can be anything"""

if type(value) != list:
return False

if len(value) == 0:
return False

for x in range(len(value)):
if type(value[x]) != int:

return False

elif x > 0 and value[x] < value[x-1]:
return False

return True

(b) [6 points] Suppose you are given the following function definitions.

1 def first(n):
2 x = 0
3 try:
4 x = second(n)
5 except StandardError:
6 x = x+1
7 return x

8 def second(n):
9 y = 2
10 try:
11 y = third(n)
12 except ValueError:
13 y = y+5
14 return y

15 def third(n):
16 if n == 0:
17 raise ValueError()
18 elif n == 1:
19 raise TypeError()
20 return n+10

Page 5

Last Name: First: Netid: Section

Assume that ValueError and TypeError are subclasses of StandardError, but neither is
a subclass of the other. For each function call below, give the answer returned. If there is
no value (e.g. program crashes), tell us that. To get full credit, you must (1) identify what
caused the error, if there was one, and (2) identify the line number where it recovered from
the error, if it recovers at all.
i. first(0)

Answer is 7. Call raises ValueError at 17, caught at 12. Assigns y = 2+5 = 7.

ii. first(1)
Answer is 1. Call raises TypeError at 19, caught at 5. Assigns x = 0+1 = 1.

iii. first(2)
Answer is 12. Call successfully completes third with value 2+10 = 12.

5. [14 points total] Loop Invariants

On the next page are two variations of the fixed partition algorithm from the last lab. The
algorithm organizes a list into negative and non-negative numbers. The version on the left has
been completed for you. The second algorithm on the right is similar to the first except that
it has a different precondtion, postcondition and loop invariant. It is also missing the code for
initialization, the loop condition, and the body of the loop. Complete this code according to
the invariant. Solutions that violate the invariant will not receive credit.

(a) [2 points] Draw the horizontal notation representation for the loop invariant on the left.

0 i j

b < 0 ??? >= 0

(b) [2 points] Draw the horizontal notation representation for the loop invariant on the right.

h j i k

b ??? < 0 >= 0

Page 6

Last Name: First: Netid: Section

(c) [10 points] Add the missing code to the function on the right. Like the function on the
left, you may use the helper function swap(b,n,m) to swap two positions in the list. Pay
close attention to the precondition and the postcondition, as they are also different.

def posneg1(b):

"""Return: Boundary i of partition

Rearranges the list into negatives
first, then non-negatives.
The value i indicates the boundary
of these two groups of values.

Pre: b is a list of numbers."""
pre: b[0..] ???
Make invariant true at start

i = 0

j = len(b)

inv: b[0..i-1] < 0, b[i..j-1] ???,
and b[j..] >= 0

while i < j:

if b[i] < 0:

i = i+1

else:

swap(b,i,j-1)

j = j-1

post: b[0..i-1] < 0 and b[i..] >= 0
return i

def posneg2(b,h,k):

"""Return: Boundary i of partition

Rearranges the list into negatives
first, then non-negatives.
The value i indicates the boundary
of these two groups of values.

Pre: h,k are indices of list b."""
pre: b[h..k] ???
Make invariant true at start

i = k

j = k

inv: b[h..j] ???, b[j+1..i] < 0,
and b[i+1..k] >= 0

while h <= j:

if b[j] < 0:

j = j-1

else:

swap(b,i,j)
i = i-1
j = j-1

post: b[h..i] < 0 and b[i+1..k] >= 0
return i

Page 7

Last Name: First: Netid: Section

6. [14 points] 2-Dimensional Lists

A matrix is a rectangular table of numbers, as shown below. The dimension of a matrix is
n × m where n is the number of rows and m the number of columns. The matrix on the left
has dimension 3x4, while the one in the middle has dimension 4x3.

In mathematics, we often want to reduce the dimension of a matrix by removing a single row
and a single column. This is shown below, where we remove the third row and second column. 1 5 0 1

2 3 −4 1
−1 0 2 1

A 3x4 matrix

1 5 0
2 3 −4
1 0 2
1 1 −1

A 4x3 matrix

1 5 0
2 3 −4
1 0 2
1 1 −1

 =

 1 0
2 −4
1 −1

Reduction to a 3x2 matrix

Implement the function below. Remember that tables are implemented in Python using row-
major order. In addition, the row and column indices start at 0.

def reduce(matrix,row,col):

""Returns: a copy of the matrix, missing the given row and column.

Preconditions: matrix is a table of numbers, row is an index (int) for a
row, while col is an index (int) for a column"""

rows = len(matrix)
cols = len(matrix[0])

copy = []
for r in range(rows):

if r != row:

copyrow = []
for c in range(cols):

if c != col:

copyrow.append(matrix[r][c])

copy.append(copyrow)

return copy

7. [14 points] Recursion

You may recall the class Person from the second prelim, whose specification is on the next page.
For this problem, you do not need to know how to use the constructor for Person. You only
need to use the three attributes mentioned in the specification.

Page 8

Last Name: First: Netid: Section

The family trees we saw before looked really simple because each set of parents only had one
child. However, this is not required by the class specification. If we wanted to show a family
tree with brothers, sisters, aunts, and uncles, it might look something like the diagram below.

class Person(object):

"""Instance is a person/family tree

INSTANCE ATTRIBUTES:
name: First name [nonempty str]
mom: Mom’s side [Person or None]
dad: Dad’s side [Person or None]

"""
...

Jane

Robin

None Ellen

John

Doug

Jackq Jillr

None

Bobp

Alice

We say that two people are related if they have a common person in their family tree (including
themselves). A recursive way of saying this is that either they are the same person, or
one of them is related to an ancestor (parent, grandparent, etc.) of another.

For example, Jack and Jill share the same parents, so they are related. Jack and Bob are related
because they share their mother, Robin. Jill and Alice are related because of Jill’s grandparents.
Robin and Jack are related because Robin herself is in Jack’s family tree. However, John and
Robin are not related even though they had children together.

Using this knowledge, implement the function below using recursion. Note the precondition;
this actually makes the function a lot simpler.

def related(p,q):

"""Return: True if Persons p and q are related

If either p or q is None, or they are not related, it returns False

Preconditions: p, q are each either a Person or None"""

if p is None or q is None:

return False

elif p is q:

return True

result = related(p.mom,q)
result = result or related(p.dad,q)
result = result or related(p,q.mom)
result = result or related(p,q.dad)

return result

Page 9

Last Name: First: Netid: Section

8. [16 points] Call Frames

1 def range(n):
2 if n == 0:
3 return [0]
4 right = [n]
5 left = range(n-1)
6 return left+right

Throughout this course, we have made heavy use of
the range function. If we wanted to, we could actually
implement this function with recursion. This would
look like something to the right.
On this page and the next, diagram the execution of
the assignment statement

>>> a = range(1)

You should draw a new diagram every time a call frame is added or erased, or an instruction
counter changes. There are a total of nine diagrams to draw. You may write unchanged in any
of the three spaces if the space does not change at that step.

Call Frames Global Space Heap Space
2

n 1

range

4

n 1

range

id1
list

0 1

5

n 1

range

id1
list

0 1

5

n 1

range

2range

n 0

right id1

right id1

Page 10

Last Name: First: Netid: Section

Call Frames Global Space Heap Space

id3a

id1
list

0 0
1 1

5

n 1

range

3range

n 0

id1
list

0 1

5

n 1

range

range

id2
list

0 0

n 0

RETURN id2

id1
list

0 1

6

n 1

range

range

id2
list

0 0
right id1

left id2

n 0

RETURN id2

id1
list

0 1
n 1

range id2
list

0 0

id3
list

0 0
1 1

right id1

left RETURN id3id2

id1
list

0 1
n 1

range id2
list

0 0

id3
list

0 0
1 1

right id1

left RETURN id3id2

right id1

right id1

Page 11

