Lecture 27

Sorting
Announcements for This Lecture

Finishing Up

- **Submit a course evaluation**
 - Will get an e-mail for this
 - Part of “participation grade”

Final: Dec 10th 2:00-4:30pm
- Study guide is posted
- Announce reviews on Tues.

- **Conflict with Final time?**
 - Submit to conflict to CMS by next Tuesday!

Assignment 7

- Should be on bolt *collisions*
- Use weekend for final touches
 - Multiple lives
 - Winning or losing the game
- Also work the extensions
 - Add anything you want
 - Need at least two
 - Ask on Piazza if unsure
 - All else is *extra credit*
Linear Search

- **Vague**: Find first occurrence of v in $b[h..k-1]$.
Linear Search

- **Vague**: Find first occurrence of v in $b[h..k-1]$.
- **Better**: Store an integer in i to truthify result condition post:

 post:
 1. v is not in $b[h..i-1]$
 2. $i = k \text{ OR } v = b[i]$
Linear Search

- **Vague**: Find first occurrence of v in $b[h..k-1]$.
- **Better**: Store an integer in i to truthify result condition post:

 $$\begin{array}{ll}
 \text{post:} & \\
 1. & v \text{ is not in } b[h..i-1] \\
 2. & i = k \quad \text{OR} \quad v = b[i]
 \end{array}$$

<table>
<thead>
<tr>
<th>h</th>
<th>?</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre: b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>post: b</td>
<td>v not here</td>
<td>v</td>
</tr>
</tbody>
</table>
Linear Search

- **Vague:** Find first occurrence of v in $b[h..k-1]$.
- **Better:** Store an integer in i to truthify result condition post:

 $\text{post: } 1. \ v \text{ is not in } b[h..i-1]$

 $2. \ i = k \ OR \ v = b[i]$

$$
\begin{array}{c}
\text{pre: } b \\
\text{h} \quad ? \quad \text{k}
\end{array}
$$

$$
\begin{array}{c}
\text{post: } b \\
v \text{ not here} \quad v \quad ?
\end{array}
$$

OR

$$
\begin{array}{c}
\text{b} \\
v \text{ not here}
\end{array}
$$
Linear Search

pre: b

post: b

OR

inv: b

11/29/18
def linear_search(b, v, h, k):
 """Returns: first occurrence of v in b[h..k-1]""
 # Store in i index of the first v in b[h..k-1]
 i = h

 # invariant: v is not in b[0..i-1]
 while i < k and b[i] != v:
 i = i + 1

 # post: v is not in b[h..i-1]
 # i >= k or b[i] == v
 return i if i < k else -1

Analyzing the Loop

1. Does the initialization make inv true?
2. Is post true when inv is true and condition is false?
3. Does the repetend make progress?
4. Does the repetend keep the invariant inv true?
Binary Search

• **Vague:** Look for v in *sorted* sequence segment b[h..k].
Binary Search

• **Vague:** Look for v in *sorted* sequence segment $b[h..k]$.

• **Better:**
 - **Precondition:** $b[h..k-1]$ is sorted (in ascending order).
 - **Postcondition:** $b[h..i-1] < v$ and $v \leq b[i..k]$

• Below, the array is in non-descending order:

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre: b</td>
<td>? sorted</td>
<td></td>
</tr>
<tr>
<td>post: b</td>
<td>$< v$</td>
<td>$\geq v$</td>
</tr>
</tbody>
</table>
Binary Search

- Look for value \(v \) in sorted segment \(b[h..k] \)

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre: \(b \)

Post: \(b \)

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< v)</td>
<td>(\geq v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inv: \(b \)

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< v)</td>
<td>?</td>
<td>(\geq v)</td>
<td></td>
</tr>
</tbody>
</table>

Example \(b \)

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

New statement of the invariant guarantees that we get leftmost position of \(v \) if found

- if \(v \) is 3, set \(i \) to 0
- if \(v \) is 4, set \(i \) to 5
- if \(v \) is 5, set \(i \) to 7
- if \(v \) is 8, set \(i \) to 10
Binary Search

- **Vague:** Look for v in **sorted** sequence segment $b[h..k]$.

- **Better:**
 - **Precondition:** $b[h..k-1]$ is sorted (in ascending order).
 - **Postcondition:** $b[h..i-1] < v$ and $v \leq b[i..k]$

- Below, the array is in non-descending order:

 - **pre:** $b[h..k]$
 - **post:** $b[h..i-1] < v$ and $v \leq b[i..k]$

 Called *binary search* because each iteration of the loop cuts the array segment still to be processed in half.
Binary Search

i = h; j = k+1;
while i != j:

Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+j)/2] gives binary search.
Sorting: Arranging in Ascending Order

Insertion Sort:

\[
\begin{array}{cccc}
0 & i & n \\
\text{inv: } b & \text{sorted} & ?
\end{array}
\]

\[
\begin{array}{c}
i = 0 \\
\text{while } i < n: \\
\quad \# \text{ Push } b[i] \text{ down into its} \\
\quad \# \text{ sorted position in } b[0..i] \\
\quad i = i + 1
\end{array}
\]

0 2 4 4 6 6 7 5

0 2 4 5 6 6 7
Insertion Sort: Moving into Position

```
i = 0

while i < n:
    push_down(b,i)
    i = i+1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b,j-1,j)
        j = j-1
```

Swap shown in the lecture about lists
The Importance of Helper Functions

i = 0
while i < n:
 push_down(b, i)
 i = i + 1

def push_down(b, i):
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b, j-1, j)
 j = j - 1

11/29/18

Can you understand all this code below?

i = 0
while i < n:
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 temp = b[j]
 b[j] = b[j-1]
 b[j-1] = temp
 j = j - 1
 i = i + 1

Sorting
def push_down(b, i):
 """Push value at position i into sorted position in b[0..i-1]""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

• b[0..i-1]: i elements
• Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
• Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

Total Swaps: \(0 + 1 + 2 + 3 + \ldots (n-1) = \frac{(n-1)*n}{2}\)

Insertion sort is an \(n^2\) algorithm

Insertion Sort: Performance
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x10^{19} y</td>
<td>3x10^{290} y</td>
</tr>
</tbody>
</table>

Major Topic in 2110: Beyond scope of this course
Sorting: Changing the Invariant

<table>
<thead>
<tr>
<th>pre: b</th>
<th>n</th>
<th>post: b</th>
<th>sorted</th>
</tr>
</thead>
</table>

Selection Sort:

\[
\begin{align*}
\text{i} & = 0 \\
\text{while} \ i & < n: \\
\text{# Find minimum in } b[i..] \\
\text{# Move it to position } i \\
i & = i + 1
\end{align*}
\]

First segment always contains smaller values

First segment always contains smaller values
Sorting: Changing the Invariant

| pre: b | ? | n | post: b | sorted |

Selection Sort:

<table>
<thead>
<tr>
<th>0</th>
<th>i</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>sorted, ≤ b[i..]</td>
<td>≥ b[0..i-1]</td>
</tr>
</tbody>
</table>

\[
i = 0
\]

\[
\text{while } i < n:
\]

\[
\begin{align*}
\text{j} &= \text{index of min of } b[i..n-1] \\
\text{swap}(b,i,j)
\end{align*}
\]

\[
i = i + 1
\]

First segment always contains smaller values

Selection sort also is an \(n^2 \) algorithm

11/29/18
Partition Algorithm

- Given a list segment $b[h..k]$ with some value x in $b[h]$:

 ![Diagram of list segment with value x]

 - Swap elements of $b[h..k]$ and store in j to truthify post:

 ![Diagram of list elements with swap]

 - x is called the pivot value
 - x is not a program variable
 - denotes value initially in $b[h]$
Sorting with Partitions

- Given a list segment b[h..k] with some value x in b[h]:

 \[
 \begin{array}{c|c}
 h & k \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{pre: } b & x \\
 \end{array}
 \]

- Swap elements of b[h..k] and store in j to truthify post:

 \[
 \begin{array}{c|c|c|c|c|c|c}
 h & i & i+1 & k \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c}
 \text{post: } b & \leq y & y & \geq y & x & \geq x \\
 \end{array}
 \]

Partition Recursively

Recursive partitions = sorting
- Called QuickSort (why???)
- Popular, fast sorting technique
QuickSort

```python
def quick_sort(b, h, k):
    """Sort the array fragment b[h..k]""
    if b[h..k] has fewer than 2 elements:
        return
    j = partition(b, h, k)
    # b[h..j-1] <= b[j] <= b[j+1..k]
    # Sort b[h..j-1] and b[j+1..k]
    quick_sort(b, h, j-1)
    quick_sort(b, j+1, k)
```

- **Worst Case:**
 - array already sorted
 - Or almost sorted
 - \(n^2\) in that case

- **Average Case:**
 - array is scrambled
 - \(n \log n\) in that case
 - Best sorting time!

\[
\begin{array}{c}
\text{pre: } \ \ b \\
\text{post: } \ \ b
\end{array}
\]

\[
\begin{array}{cccc}
h & i & i+1 & k \\
\text{pre: } \ \ x & ? \\
\text{post: } \ \ <= x & x & >= x
\end{array}
\]
Final Word About Algorithms

- **Algorithm:**
 - Step-by-step way to do something
 - Not tied to specific language

- **Implementation:**
 - An algorithm in a specific language
 - Many times, not the “hard part”

- **Higher Level Computer Science courses:**
 - We teach advanced algorithms (pictures)
 - Implementation you learn on your own