Lecture 23

Loop Invariants
Announcements for This Lecture

Prelim 2

- Difficulty was reasonable
 - Mean: 72, Median: 75
 - Just 2 points below target
- What do grades mean?
 - A: 80-100
 - B: 60-100
 - C: 30-55
- Final will be about same
 - But a few easier parts

Assignments

- A6 due TOMORROW
 - Complete it by midnight
 - Also, fill out survey
- A7 due December 4
 - Instructions up tomorrow
 - Focus of Thursdays lecture
 - 2.5 weeks including T-Day
 - 2 weeks without the break
- Both are very important
 - Each worth 8% of grade
Some Important Terminology

• **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 ▪ Can either be a *comment*, or an *assert* command

• **invariant**: assertion supposed to "always" be true
 ▪ If temporarily invalidated, must make it true again
 ▪ **Example**: class invariants and class methods

• **loop invariant**: assertion supposed to be true before and after each iteration of the loop

• **iteration of a loop**: one execution of its body
Assertions versus Asserts

- **Assertions prevent bugs**
 - Help you keep track of what you are doing
- **Also track down bugs**
 - Make it easier to check belief/code mismatches
- **The assert statement is a (type of) assertion**
 - One you are enforcing
 - Cannot always convert a comment to an assert

```
# x is the sum of 1..n
```

```
x ? n 1
```

```
x ? n 3
```

```
x ? n 0
```

Comment form of the assertion.

The root of all bugs!
Preconditions & Postconditions

- **Precondition**: assertion placed before a segment
- **Postcondition**: assertion placed after a segment

Relationship Between Two

If **precondition** is true, then **postcondition** will be true
Solving a Problem

precondition

x = sum of 1..n
n = n + 1
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

11/13/18
Loop Invariants
Solving a Problem

precondition

x = sum of 1..n
n = n + 1
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

11/13/18 Loop Invariants
Invariants: Assertions That Do Not Change

- **Loop Invariant**: an assertion that is true before and after each iteration (execution of repetend)

```plaintext
x = 0; i = 2

while i <= 5:
    x = x + i*i
    i = i + 1

# x = sum of squares of 2..5
```

Invariant:

x = sum of squares of 2..i-1

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \quad i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
& x = x + i \times i \\
& i = i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:
Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[x = x + i \cdot i \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1: 2..1 (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

x = 0; i = 2

Inv: x = sum of squares of 2..i-1

while i <= 5:
 x = x + i*i
 i = i + 1

Post: x = sum of squares of 2..5

Integers that have been processed:

Range 2..i-1: 2..1 (empty)
2

11/13/18

Loop Invariants
Invariants: Assertions That Do Not Change

\[
x = 0; \ i = 2
\]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
\text{x} &= \text{x} + \text{i} \times \text{i} \\
\text{i} &= \text{i} + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3

Range 2..i-1: 2..3

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[
x = 0; \ i = 2
\]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):
 \[
x = x + i \times i
\]
 \[
i = i + 1
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4

Range 2..i-1: 2..4

The loop processes the range 2..5

11/13/18
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of \(2..i-1 \)

\begin{align*}
\textbf{while} \ i \leq 5: \\
& \quad x = x + i \times i \\
& \quad i = i + 1
\end{align*}

Post: \(x = \) sum of squares of \(2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):
 \[x = x + i \times i \]
 \[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

Invariant was always true just before test of loop condition. So it’s true when loop terminates

The loop processes the range 2..5
Process integers in a..b
inv: integers in a..k-1 have been processed
k = a

while k <= b:
 process integer k
 k = k + 1

post: integers in a..b have been processed

Command to do something

Equivalent postcondition

Loop Invariants
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

```
while  k <= c:
    k = k + 1
# Postcondition: range b..c has been processed
```
Designing Integer while-loops

1. Recognize that a range of integers \(b..c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))

```python
# Process \( b..c \)

# Invariant: range \( b..k-1 \) has been processed
while \( k \leq c \):
    k = k + 1

# Postcondition: range \( b..c \) has been processed
```

11/13/18 Loop Invariants 20
Designing Integer **while-loops**

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process $b..c$

Initialize variables (if necessary) to make invariant true

Invariant: range $b..k-1$ has been processed

```plaintext
while  k <= c:
    # Process $k$
    k = k + 1
# Postcondition: range $b..c$ has been processed
```

11/13/18 Loop Invariants 21
Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something

Equivalent postcondition

11/13/18
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 ... k-1 k k+1 ... n
Finding an Invariant

Make b True if n is prime, False otherwise

```python
b = True
k = 2

# invariant: $b$ is True if no int in 2..k-1 divides $n$, False otherwise
while k < n:
    # Process k;
    k = k + 1

# b is True if no int in 2..n-1 divides $n$, False otherwise
```

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise

b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Equivalent postcondition

1 2 3 … k-1 k k+1 … n
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

K: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k−1
D: 1..k−1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

```
while k < len(s):
    # Process k
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

k: next integer to process.
Which have been processed?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0..k</td>
</tr>
<tr>
<td>B</td>
<td>1..k</td>
</tr>
<tr>
<td>C</td>
<td>0..k–1</td>
</tr>
<tr>
<td>D</td>
<td>1..k–1</td>
</tr>
<tr>
<td>E</td>
<td>I don’t know</td>
</tr>
</tbody>
</table>

What is the invariant?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>x = no. adj. equal pairs in s[1..k]</td>
</tr>
<tr>
<td>B</td>
<td>x = no. adj. equal pairs in s[0..k]</td>
</tr>
<tr>
<td>C</td>
<td>x = no. adj. equal pairs in s[1..k–1]</td>
</tr>
<tr>
<td>D</td>
<td>x = no. adj. equal pairs in s[0..k–1]</td>
</tr>
<tr>
<td>E</td>
<td>I don’t know</td>
</tr>
</tbody>
</table>
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
c: 0..k-1
D: 1..k-1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k-1]
D: x = no. adj. equal pairs in s[0..k-1]
E: I don’t know

for s = 'ebeee', x = 2
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1
 # x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

A: k = 0 B: [blue]k = 1[/blue] C: k = −1 D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1] B: s[k-1] and s[k] C: s[k-1] and s[k+1] D: s[k] and s[n] E: I don’t know

for s = 'ebeee', x = 2
Finding an Invariant

```python
# set x to # adjacent equal pairs in s
x = 0
k = 1
# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
    # Process k
    x = x + 1 if (s[k-1] == s[k]) else 0
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something

for \(s = 'ebeee' \), \(x = 2 \)

Equivalent postcondition

What is initialization for \(k \)?

- **A:** \(k = 0 \)
- **B:** \(k = 1 \)
- **C:** \(k = -1 \)
- **D:** I don’t know

Which do we compare to “process” \(k \)?

- **A:** \(s[k] \) and \(s[k+1] \)
- **B:** \(s[k-1] \) and \(s[k] \)
- **C:** \(s[k-1] \) and \(s[k+1] \)
- **D:** \(s[k] \) and \(s[n] \)
- **E:** I don’t know
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[c = ?? \] Command to do something
\[k = ?? \]

inv:

while k < len(s):
 # Process k
 \[k = k + 1 \]

c = largest char in s[0..len(s)-1]

1. What is the invariant?

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

c = ??

k = ??

inv: c is largest element in s[0..k–1]

while k < len(s):
 # Process k
 k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

 Command to do something

 Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[
c = \text{??}
\]

Command to do something

\[
k = \text{??}
\]

inv: c is largest element in s[0..k–1]

\[
\text{while } k < \text{len}(s):
\]

Process k

\[
k = k + 1
\]

c = largest char in s[0..len(s)–1]

Equivalent postcondition

1. What is the invariant?

2. How do we initialize \(c\) and \(k\)?

A: \(k = 0; \ c = s[0]\)
B: \(k = 1; \ c = s[0]\)
C: \(k = 1; \ c = s[1]\)
D: \(k = 0; \ c = s[1]\)
E: None of the above
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[c = ??? \] Command to do something
\[k = ??? \]

inv: c is largest element in s[0..k–1]
\[
\text{while } k < \text{len}(s):
\]

\# Process k
\[k = k + 1 \]

c = largest char in s[0..len(s)–1]

\[\text{Equivalent postcondition} \]

1. What is the invariant?
2. How do we initialize c and k?

\[\begin{align*}
A: & \quad k = 0; \ c = s[0] \\
B: & \quad k = 1; \ c = s[0] \\
C: & \quad k = 1; \ c = s[1] \\
D: & \quad k = 0; \ c = s[1] \\
E: & \quad \text{None of the above}
\end{align*} \]

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k–1 is not empty. You must start with k = 1.