11/4/18

Beyond Sequences: The while-loop

While-Loops and Flow

while <condition>:

statement 1 repetend or body

statement n

* Relationship to for-loop

= Broader notion of
“still stuff to do”

= Must explicitly ensure
condition becomes false

= You explicitly manage
what changes per iteration

print('Before while") Output:
@unt =0 Before while
i=0 Start loop 0
while i < 3:
End loop
print('Start loop '+str(i)) Start loop 1
f:ou.nt =count +1i End loop
i=i+l Start loop 2
print('End loop ') End loop
print('After while") After while

while Versus for

Note on Ranges

process range b..c-1 # process range b..c-1

for k in range(b,c) k=b
process k while k < c:
process k

[Must remember to increment 5 k=k+1

process range b..c # process range b..c

for k in range(b,c+1) k=b
process k while k <= c:
process k
k=k+1

° m..n is a range containing n+1-m values
= 2.5 contains 2,3,4,5. Contains 5+1 — 2 =4 values
= 2.4 contains 2,3,4. Contains 4+1 — 2 = 3 values
= 2.3 contains 2, 3. Contains 3+1 — 2 =2 values
= 2.2 contains 2. Contains 2+1 — 2 = 1 values

= 2..1 contains ?7?

* The notation m..n, always implies that m <= n+1
= So you can assume that even if we do not say it

= If m = n+1, the range has 0 values

Patterns for Processing Integers

while Versus for

range a..b-1
i=a i=c
while i while iE)d:
process integer I process integer I
i=i+1 =i+ 1

range c..d

store in count # of '/'s in String s # Store in double var. v the sum

count = 0 #1/1 +1/2+..+1/n
i=0 v=0; # callthis 1/0 for today
while i < len(s): i=0
if g[i] =="/" while i <= n:
| count= count + 1 v=v+10/i
i=i+1 i=i+1
count is # of '/'s in s[0..s.length()-1] #v=1/1 +1/2+..+1/n

table of squares to N # table of squares to N

seq =[] seq =]
n = floor(sqrt(N)) + 1 k=0
for k in range(n): while k*k <= N:
seq.append(k*k) seq.append(k*k)
k=k+1

A while loop can use
complex expressions to
check if the loop is done

A for-loop requires that
you know where to stop
the loop ahead of time

while Versus for

Fibonacci numbers:

F() = 1

F =1

Fn=Fn—l +Fn—2
Table of n Fibonacei nums # Table of n Fibonacei nums
fib=1[1, 1] fib=[1, 1]
for k in range(2,n): while len(fib) < n:

| fib.append(fib[-1] + fib[-])

| fib.append(fib[-1] + fib[-2])

[Sometimes you do not use] [Do not need to have a loop]

the loop variable at all

variable if you don’t need one

11/4/18

Cases to Use while

[Great for when you must modify the loop Variable]

Remove all 3's from list t # Remove all 3's from list t
i=0 while 3 in t:
while i < len(t): | t.remove(3)
no &’s in $[0..i-1]
if t[i] == 3:

The stopping condition is not

| dfﬂ t[i] Stopping anumerical counter this time.
else: point keeps Simplifies code a lot.
| i+= changing.

Cases to Use while

* Want square root of ¢
= Make poly f(x) =x2-c

def sqrt(c):
""Return: square root of ¢
Uses Newton’s method

Recall Lab 9

Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.
All other cards are at face value.

= Want root of the poly
(x such that f(x) is 0)

e Use Newton’s Method
= xo = GUESS (¢/27?)
" Xer =X — SO0/ ()
= X, — (6,-0)/(2x,)
=X, —X,/2 + ¢/2x,
=x,/2 + ¢/2x,
= Stop when x,, good enough

Pre: ¢ >= 0 (int or float)""

x=c¢/2

Check for convergence

while abs(x*x - ¢) > le-6:
Get xp+1 from x,
x=x/23+¢/(R*X)

return x

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:

How do we design
this as a loop?

Play until player
stops or busts

Recall Lab 9

halted = Falseﬁ Explicit loop variable]

while not game.playerBust() and not halted:
ri: input received from player

ri = input('Type h for new card, s to stop: ')

break the
if (ri =="h"): -

game.playerHand.append(game.deck.pop(0)
print('You drew the ' + str(game.playerHand[-1]) +'\n")

Using while-loops Instead of for-loops

Advantages

Disadvantages

¢ Better for modifying data
= More natural than range
= Works better with deletion
¢ Better for convergent tasks
= Loop until calculation done
= Exact steps are unknown
* Easier to stop early

= Just set loop var to False

* Performance is slower
= Python optimizes for-loops
= Cannot optimize while
¢ Infinite loops more likely
= Easy to forget loop vars
= Or get stop condition wrong
* Debugging is harder

= Will see why in later lectures

