
11/4/18

1

Beyond Sequences: The while-loop
while <condition>:

statement 1
…
statement n

• Relationship to for-loop
§ Broader notion of

“still stuff to do”
§ Must explicitly ensure

condition becomes false
§ You explicitly manage

what changes per iteration

condition
true

false

repetend

repetend or body

While-Loops and Flow

print('Before while')
count = 0
i = 0
while i < 3:

print('Start loop '+str(i))
count = count + i
i = i + 1
print('End loop ')

print('After while')

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

while Versus for

process range b..c-1
for k in range(b,c)

process k

process range b..c-1
k = b
while k < c:

process k
k = k+1Must remember to increment

process range b..c
for k in range(b,c+1)

process k

process range b..c
k = b
while k <= c:

process k
k = k+1

Note on Ranges

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it
§ If m = n+1, the range has 0 values

Patterns for Processing Integers
range a..b-1

i = a
while i < b:

process integer I
i = i + 1

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):

if s[i] == '/':
count= count + 1

i= i +1
count is # of '/'s in s[0..s.length()-1]

range c..d
i= c
while i <= d:

process integer I
i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 0
while i <= n:

v = v + 1.0 / i
i= i +1

v= 1/1 + 1/2 + …+ 1/n

while Versus for

table of squares to N
seq = []
n = floor(sqrt(N)) + 1
for k in range(n):

seq.append(k*k)

table of squares to N
seq = []
k = 0
while k*k <= N:

seq.append(k*k)
k = k+1

A for-loop requires that
you know where to stop
the loop ahead of time

A while loop can use
complex expressions to
check if the loop is done

11/4/18

2

while Versus for

Table of n Fibonacci nums
fib = [1, 1]
for k in range(2,n):

fib.append(fib[-1] + fib[-2])

Table of n Fibonacci nums
fib = [1, 1]
while len(fib) < n:

fib.append(fib[-1] + fib[-2])

Sometimes you do not use
the loop variable at all

Do not need to have a loop
variable if you don’t need one

Fibonacci numbers:
F0 = 1
F1 = 1
Fn = Fn–1 + Fn–2

Cases to Use while

Remove all 3's from list t
i = 0
while i < len(t):

no 3’s in t[0..i–1]
if t[i] == 3:

del t[i]
else:

i += 1

Remove all 3's from list t
while 3 in t:

t.remove(3)

Great for when you must modify the loop variable

Stopping
point keeps
changing.

The stopping condition is not
a numerical counter this time.

Simplifies code a lot.

Cases to Use while

• Want square root of c
§ Make poly f(x) = x2-c
§ Want root of the poly

(x such that f(x) is 0)
• Use Newton’s Method

§ x0 = GUESS (c/2??)
§ xn+1 = xn – f(xn)/f'(xn)

= xn – (xnxn-c)/(2xn)
= xn – xn/2 + c/2xn
= xn/2 + c/2xn

§ Stop when xn good enough

def sqrt(c):
"""Return: square root of c
Uses Newton’s method
Pre: c >= 0 (int or float)"""
x = c/2
Check for convergence
while abs(x*x – c) > 1e-6:

Get xn+1 from xn
x = x / 2 + c / (2*x)

return x

Recall Lab 9

Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.

All other cards are at face value.

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:

Play until player
stops or busts

How do we design
this as a loop?

Recall Lab 9

halted = False

while not game.playerBust() and not halted:
ri: input received from player
ri = input('Type h for new card, s to stop: ')

halted = (ri == 's')

if (ri == 'h'):
game.playerHand.append(game.deck.pop(0)
print('You drew the ' + str(game.playerHand[-1]) +'\n')

Explicit loop variable

Set to False to
break the loop

Using while-loops Instead of for-loops

Advantages

• Better for modifying data
§ More natural than range
§ Works better with deletion

• Better for convergent tasks
§ Loop until calculation done
§ Exact steps are unknown

• Easier to stop early
§ Just set loop var to False

Disadvantages

• Performance is slower
§ Python optimizes for-loops
§ Cannot optimize while

• Infinite loops more likely
§ Easy to forget loop vars
§ Or get stop condition wrong

• Debugging is harder
§ Will see why in later lectures

