Lecture 20

Operators and
Abstraction



Announcements for Today

Reading

Assignments

e Prelim, Nov 8t 5:15 or 7:30

= Same break-up as last time
= But will swap times assigned

 Material up to November 1
= Review posted this weekend
= Recursion + Loops + Classes

e Conflict with Prelim time?
= Prelim 2 Conflict on CMS

= SDS students must submit!
= LAST DAY TO SUBMIT

11/1/18

Operators and Abstraction

* A4 graded by tomorrow

= Will cover survey next week
* A5 to be graded Saturday

= Returned via Gradescope

= Similar policies to A2
* Need to be working on A6
= Should have Dataset done

" Cluster finished by Sunday
= Best way to study for exam



Case Study: Fractions

e Want to add a new type class Fraction(object):

= Values are fractions: ¥, 34 ""Instance is a fraction n/d

INSTANCE ATTRIBUTES:
_numerator: top [int]

= (Operations are standard

multiply, divide, etc.

denominator; bottom [int > 0
- Example. 1/2*% — 3/8 uuu— [ ]

e (Can do this with a class
def  init  (self,n=0,d=1):

"""Init: makes a Fraction™"
= Operations are methods self. numerator =n

o Example: fracl.py self._denominator = d

= Values are fraction objects

11/1/18 Operators and Abstraction



Case Study: Fractions

e Want to add a new type

class Fraction(object):

= Values are fractions: ¥, 34

= Oper
multi

= Exan

:

Reminder: Hid

e Cando

.

attributes, use
getters/setters

L

c

= Values are fraction objects

= (Operations are methods

e Example: fracl.py

11/1/18

""Instance is a fraction n/d

INSTANCE ATTRIBUTES:
> _numerator: top  [int]
_denominator: bottom [int > 0]

def  init  (self,n=0,d=1):
""Tnit: makes a Fraction"""

self. numerator = n
self. denominator = d

Operators and Abstraction



Problem: Doing Math is Unwieldy

What We Want What We Get

1 | 1 1\ 5 >>>p = Fraction(1,2)
(2 F3 + Z) * 4 >>> q = Fraction(1,3)
>>> p = Fraction(1,4)
>>> g = Fraction(5,4)

>>> (p.add(q.add(r))).mult(s)

@confusing! J

11/1/18 Operators and Abstraction 5




Problem: Doing Math is Unwieldy

What We Want What We Get

1 | 1 1\ 5 >>>p = Fraction(1,2)
(2 ' 3 T Z) i >>> q = Fraction(1,3)

>>> pr = Fraction(1,4)
4 N aes s Fpacti A
Why not use the s = Fraction(5,4)
standard Python >>> (p.add(q.add(r))).mult(s)

math operations?
\_ / This is confusing! }

11/1/18 Operators and Abstraction 6




Special Methods in Python

e Have seen three so far

o init  for initializer

= gstr for str()
= _ repr__ for repr()

e Start/end with 2 underscores
= This is standard in Python
= Used in all special methods
= Also for special attributes

 We can overload operators

= (Give new meaning to +, *, -

11/1/18

Operators and Abstraction

class Point3(object):
"""Instances are points in 8D space""

def _ init_ (self,x=0,y=0,z=0):
""Tnitializer: makes new Point3"""

def _ str_ (self,q):
"""Returns: string with contents""”

def _ repr__ (self,q):

"""Returns: unambiguous string""”




Operator Overloading

* Many operators in Python a special symbols
=+ - /. % ** for mathematics
" ==_|= < > for comparisons

* The meaning of these symbols depends on type
= 1+2 vs'Hello' + "World
= 1 <R vs'Hello' < World

e Our new type might want to use these symbols

" We overload them to support our new type

11/1/18 Operators and Abstraction



Returning to Fractions

What We Want Operator Overloading
1 1 1\ 5 Python has methods that
(E + 3 + Z) * 4 correspond to built-in ops
= _ add__ corresponds to +
- N = _ mul corresponds to *
Why not use the "= _ eq corresponds to ==
= Not impl ted by default
standard Python O THPTEmEE by et

\l

math operations?

/

11/1/18

To overload operators you
implement these methods

Operators and Abstraction



Operator Overloading: Multiplication

class Fraction(object):
"""Instance attributes:
_numerator: top [int]

def __mul_ (self,):

"""Returns: Product of self, g
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction

return Fraction(top,bot)

11/1/18

top= self._numerator*q._numerator

>>>p = Fraction(1,R)
>>> q = Fraction(3,4)

_denominator; bottom [int > 0]"” >>> 7 =Dp*(q

Python

v converts to

>>>p=p.__mul_ (@

Operator overloading uses
bot= self._denominator*q._denominator method 1n object on left.

Operators and Abstraction

10



Operator Overloading: Addition

class Fraction(object):

"""Tnstance attributes:
_numerator: top [int]
_denominator: bottom [int > 0]""”

def _add__ (self,q):

""Returns: Sum of Se]_f, d

Makes a new Fraction
Precondition: q a Fraction"""

assert type(q) == Fraction

bot= self._denominator*q._denominator

top= (self._numerator*q._denominator+
self._denominator*q._numerator)

return Fraction(top,bot)

>>>p = Fraction(1,R)
>>> q = Fraction(3,4)
>>> P = p+(

Python

v converts to

>>>p=p.__add__(q)

Operator overloading uses
method in object on left.

11/1/18 Operators and Abstraction 11



Comparing Objects for Equality

e Earlier in course, we saw
compare object contents
= This is not the default
= Default: folder names

* Must implement __eq
= Operator overloading!
= Not limited to simple

attribute comparison
= EXx: cross multiplying
4 ©. 7 4

—_ R, ——

2 4

class Fraction(object):

"""Instance attributes:
_nhumerator: top [int]
_denominator: bottom [int > O]"""

def _ eq  (self,q):

""Returns: True if self, q equal,
False if not, or q not a Fraction""

if type(q) != Fraction:

return False
left = self._numerator*q._denominator
rght = self._denominator*q._numerator
return left == rght

11/1/18 Operators and Abstraction 12



iSs Versus ==

e pis q evaluates to False e p == ( evaluates to True
= Compares folder names = But only because method
= Cannot change this __€q__ compares contents
p| idz id2 q | id3 id3
Point Point
X 2.2 X 2.2
y 5.4 y 5.4
z 6.7 z 6.7

Always use (x is None) not (x == None)

11/1/18 Operators and Abstraction 13



Structure of a Proper Python Class

class Fraction(object): | Docstring describing class
"""Instances represent a Fraction

Attributes: \\ Attributes are all hidden

_numerator: [int]
_denominator: [int > 0]"""

def getNumerator(self): -
def _init_ (self,n=0,d=1): r )

Initializer for the class.

l """Initializer: makes a Fraction"""

Defaults for parameters.
\ Y,
def add__ (self,q): r . )
\ " Returns: Sum of self, ¢ Python operator overloading
def normalize(self): 4 )

l """Puts Fraction in reduced form""" L Normal method definitions

J

11/1/18 Operators and Abstraction



Recall: Overloading Multiplication

class Fraction(object): >>>p = Fraction(1,R)

""Tnstance attributes: )
. >>>q =2 # an int
_numerator [int]: top

_denominator [int > 0]: bottom """ >>>Tp =Dp*q
def _ mul__(self,q): Python
"""Returns: Product of self, g converts to
Makes a new Fraction; does not

modify contents of self or q

Precondition: g a Fraction""
l assert type(q) == Fraction I

top = self._numerator*q._numerator Can only multiply fractions.

bot= self._denominator*q._denominator But ints “make sense’” too.
return Fraction(top,bot)

>>>p=p.__mul_ (q # ERROR

11/1/18 Operators and Abstraction 15



Solution: Look at Argument Type

* Overloading use left type  class Fraction(object):

= p*q=>p._mul_ (Q def mul (self,q):

= Done for us automatically """Returns: Product of self, q
Precondition: q a Fraction or int"™

. if type(q) == Fraction:
* What about typ€ on I‘lght? return self._mulFrac(q)

= Have to handle ourselves elif type(q) == int:
return self._mullnt(q)

= [Looks in class definition

e Can implement with ifs

= Write helper for each type def _mullnt(self,q): # Hidden method

* Check type 1n method return Fraction(self._numerator=q,
self._denominator)

= Send to appropriate helper

11/1/18 Operators and Abstraction 16



A Better Multiplication

class Fraction(object): >>>p = Fraction(1,R)

>>>q =2 # an int
def __mul_ (self,): d

""Returns: Product of self, q >>>p=Dp*(q
Precondition: q a Fraction or int"""
if type(q) == Fraction: Python
return self._mulFrac(q) v converts to
elif type(q) == int:
return self._mullnt(q) >>>p = p._mul_(q) # OKI

def _mulInt(self,q): # Hidden method
return Fraction(self._numerator*q,

See frac3.py for a full

self. denominator) example of this method

11/1/18 Operators and Abstraction 17



What Do We Get This Time?

class Fraction(object): >>>p = Fraction(1,R)

>>>q=2 #anin
def _ mul__ (self,q): d & #a b

"""Returns: Product of self, g >>>71 = Q"D
Precondition: q a Fraction or int"""
if type(q) == Fraction:
return self._mulFrac(q) A: FPaCtiOD(Z,Z)
elif type(t) == Int: B: Fraction(1,1)
return self._mullnt(q) .
C: Fraction(2,4)
def _mullnt(self,q): # Hidden method D: Error
return Fraction(self._numerator*q, E: I don’t know

self._denominator)

11/1/18 Operators and Abstraction

18



What Do We Get This Time?

class Fraction(object): >>>p = Fraction(1,R)

>>>(q=Q#anin
def mul_ (self,Q): q an int
"""Returns: Product of self, q >>>p=Q*p
Precondition: q a Fraction or int"™

if type(q) == Fraction:

Meaning determined by left.

return self._mulFrac(q) Variable q stores an int.
elif type(q) == int:

return self._mullnt(q)

C: Fraction(’,4)
def _mullnt(self,q): # Hidden method D: Error CORRECT

return Fraction(self._numerator=q, E: I don’t know
self._denominator)

11/1/18 Operators and Abstraction



The Python Data Model

Note: Slicing is done exclusively with the following three methods. A call like
a[l:2] = b
R — http://docs.python.org/3/reference/datamodel .html

a[slice(l, 2, None)] = b

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)

Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers and slice objects. Note that the special in-
terpretation of negative indexes (if the class wishes to emulate a sequence type) is up to the  getitem () method. If key is of an inappropriate
type, TypeError may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

Note: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the end of the sequence.

object.___missing__ (self, key)
Called by dict. getitem () toimplement self[key] for dict subclasses when key is not in the dictionary.

object.__setitem__ (self, key, value)

Called to implement assignment to self[key]. Same note as for getitem (). This should only be implemented for mappings if the objects
support changes to the values for keys, or if new keys can be added, or for sequences if elements can be replaced. The same exceptions should be
raised for improper keyvalues as for the getitem () method.

object.___delitem__(self, key)

Called to implement deletion of self[key]. Same note as for _ getitem (). This should only be implemented for mappings if the objects support
removal of keys, or for sequences if elements can be removed from the sequence. The same exceptions should be raised for improper key values as
for the getitem () method.

11/1/18 Operators and Abstraction 20


http://docs.python.org/2/library/functions.html

Advanced Example: Pixels

01234567389101112

= Has byte buffer attribute

= Pretends to be list of tuples v
= You can slice/iterate/etc...

[(R55,255,255), (2565,255,285), ...]

* Image is list of list of RGB
= But this 1s really slow
= Faster: byte buffer (777)

= Beyond scope of course

P Eo VXTI R W —O

 Compromise: Pixels class

e Uses data model to do this

11/1/18 Operators and Abstraction 21



Advanced Example: Pixels

01234567389101112

* Image is list of list of RGB

0
1 |

Abstraction: Making a type easier to
use by hiding details from the user

7 9
10

* Compromise: Pixels class 1t
= Has byte buffer attribute

= Pretends to be list of tuples v
= You can slice/iterate/etc...

}255,255,255), (R55,255,265), ...]

o Uses data model to[lie to you!

11/1/18 Operators and Abstraction 22



Advanced Topic Warning!

The following will not be on the exam

If you ask “Will this be on the Exam”™

we will be

11/1/18 Operators and Abstraction

23



Properties: Invisible Setters and Getters

class Fraction(object):

"""Tnstance attributes:
_numerator: [int]
_denominator: [int > 0]"""

@property

def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int"™

return self._numerator

@numerator.setter

def numerator(self,value):
assert type(value) == int
self._numerator = value

11/1/18

>>>p = Fraction(1,2)
>>> X = p.numerator

Python

; ; converts to

>>> x = p.numerator()

>>> p.numerator = 2

Python

; ; converts to

>>> p.numerator(R)

Operators and Abstraction

24



Properties: Invisible Setters and Getters

class Fraction(object):
""Tnstance attributes:
_numerator: [int]

@property
def numerator(self):

return|self. numerator

@numerator.setter
def numerator(self,value):
assert type(value) == int

self._numerator = value

11/1/18

_denominator: [int > 0]"""

Decorator specifies that next
method is getter for property
of the same name as method

""Numerator value of Fraction <[ Docstring describing property ]

Invariant: must be an int"™

p
L Property uses hidden attribute. J

Decorator specifies that next
method is the setter for property
whose name i1s numerator.

Operators and Abstraction 25



Properties: Invisible Setters and Getters

class Fraction(object): e ™\
""nstance attributes: Goal: Data Encapsulation
_numerator: [int] Protecting your data from
_denominator: [int > O]"™" other, “clumsy” users.
@property \, /
def numerator(self): r b

"""Numerator value of Fraction
Invariant: must be an int"™

return self._numerator

11/1/18

L Only the getter is required!

J

~

If no setter, then the
attribute 1s “immutable”.

J

Replace Attributes w/ Properties

(Users cannot tell difference)

Operators and Abstraction

26



