
Using Classes Effectively

Lecture 18

Announcements for Today

Exam Time Assignments

• A4 is due tonight!
§ Survey is still open

• A5 was posted yesterday
§ Shorter written assignment
§ Due Wednesday at Midnight

• A6 to be posted tomorrow
§ Due a week after prelim
§ Designed to take two weeks
§ Finish Task 3 before exam

10/25/18 Using Classes Effectively 2

• Prelim, Nov 9th 5:15 or 7:30
§ Same break-up as last time
§ But will swap times assigned

• Material up to November 1
§ Review posted this weekend
§ Recursion + Loops + Classes

• Conflict with Prelim time?
§ Prelim 2 Conflict on CMS
§ Submit by next Thursday
§ SDS students must submit!

Recall: The __init__ Method

def __init__(self, n, s, b):
""”Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/25/18 Using Classes Effectively 3

w = Worker('Obama', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor
two underscores

Recall: The __init__ Method

def __init__(self, n, s, b):
""”Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/25/18 Using Classes Effectively 4

w = Worker('Obama', 1234, None)
two underscores

Are there other
special methods
that we can use?

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/25/18 Using Classes Effectively 5

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/25/18 Using Classes Effectively 6

What type is
this value?

The value’s
type is clear

repr() is for
unambigious
representation

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
"""Class for points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+self.x + ',' +

self.y + ',' +
self.z + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/25/18 7Using Classes Effectively

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
"""Class for points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+self.x + ',' +

self.y + ',' +
self.z + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/25/18 8Using Classes Effectively

Gives the
class name

__repr__ using
__str__ as helper

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, //, …)
§ Time (set: times of day; ops: time span, before/after, …)
§ Worker (set: all possible workers; ops: hire,pay,promote,…)
§ Rectangle (set: all axis-aligned rectangles in 2D;

ops: contains, intersect, …)

• To define a class, think of a real type you want to make
§ Python gives you the tools, but does not do it for you
§ Physically, any object can take on any value
§ Discipline is required to get what you want

Designing Types From first
day of class!

10/25/18 Using Classes Effectively 9

Making a Class into a Type

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

10/25/18 Using Classes Effectively 10

Planning out a Class
class Time(object):

"""Class to represent times of day.
INSTANCE ATTRIBUTES:

hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: this time is noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1110/25/18 Using Classes Effectively

Planning out a Class
class Rectangle(object):

"""Class to represent rectangular region
INSTANCE ATTRIBUTES:

t: y coordinate of top edge [float]
l: x coordinate of left edge [float]
b: y coordinate of bottom edge [float]
r: x coordinate of right edge [float]

For all Rectangles, l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1210/25/18 Using Classes Effectively

Planning out a Class
class Rectangle(object):

"""Class to represent rectangular region
INSTANCE ATTRIBUTES:

t: y coordinate of top edge [float]
l: x coordinate of left edge [float]
b: y coordinate of bottom edge [float]
r: x coordinate of right edge [float]

For all Rectangles, l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1310/25/18 Using Classes Effectively

Special invariant relating
attributes to each other

Planning out a Class
class Hand(object):

"""Instances represent a hand in cards.
INSTANCE ATTRIBUTES:

cards: cards in the hand [list of card]
This list is sorted according to the
ordering defined by the Card class."""

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards"""

def isFullHouse(self):
"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

10/25/18 Using Classes Effectively 14

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

10/25/18 Using Classes Effectively 15

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
self.min = min

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

10/25/18 Using Classes Effectively 16

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

?

10/25/18 Using Classes Effectively 17

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = (self.hour + hours +

self.min // 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

10/25/18 Using Classes Effectively 18

Role of Invariants and Preconditions

• They both serve two purposes
§ Help you think through your

plans in a disciplined way
§ Communicate to the user* how

they are allowed to use the class

• Provide the interface of the class
§ interface btw two programmers
§ interface btw parts of an app

• Important concept for making
large software systems

* …who might well be you!

in•ter•face |ˈintərˌfās| noun

1. point where two systems, subjects, organi-
zations, etc., meet and interact : the inter-
face between accountancy and the law.

• chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its
air/liquid interface.

2. Computing a device or program enabling a
user to communicate with a computer.

• a device or program for connecting two
items of hardware or software so that
they can be operated jointly or
communicate with each other.

—The Oxford American Dictionary

10/25/18 Using Classes Effectively 19

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

Easy(ish) if we are the user.
But what if we aren’t?

10/25/18 Using Classes Effectively 20

Recall: Enforce Preconditions with assert

def anglicize(n):
"""Returns: the anglicization of int n.
Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
assert 0 < n and n < 1000000, str(n)+' is out of range'
Implement method here…

Check (part of)
the precondition

(Optional) Error message
when precondition violated

10/25/18 Using Classes Effectively 21

Enforce Method Preconditions with assert
class Time(object):

"""Class to represent times of day."""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int
assert hour >= 0
assert 0 <= min and min < 60

Instance Attributes:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Initializer creates/initializes all
of the instance attributes.
Asserts in initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

10/25/18 Using Classes Effectively 22

Hiding Methods From Access

• Put underscore in front of a
method will make it hidden
§ Will not show up in help()
§ But it is still there…

• Hidden methods
§ Can be used as helpers

inside of the same class
§ But it is bad style to use

them outside of this class
• Can do same for attributes

§ Underscore makes it hidden
§ Do not use outside of class

class Time(object):
"""INSTANCE ATTRIBUTES:

hour: the hour [int in 0..23]
min: the minute [int in 0..59]"""

def _is_minute(self,m):
"""Return: True if m valid minute"""
return (type(m) == int and

m >= 0 and m < 60)

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert self._is_minute(m)
…

10/25/18 Using Classes Effectively 23

Helper
method

HIDDEN

Enforcing Invariants

class Time(object):
"""INSTANCE ATTRIBUTES:

hour: the hour [int in 0..23]
min: the minute [int in 0..59]

"""

• These are just comments!
>>> t = Time(2,30)
>>> t.hour = 'Hello'

• How do we prevent this?

• Idea: Restrict direct access
§ Only access via methods
§ Use asserts to enforce them

• Example:
def getHour(self):

"""Returns: the hour"""
return self.hour

def setHour (self,value):
"""Sets hour to value"""
assert type(value) == int
assert value >= 0 and value < 24
self.numerator = value

Invariants:
Properties that

are always true.

10/25/18 Using Classes Effectively 24

Data Encapsulation

• Idea: Force the user to only use methods
• Do not allow direct access of attributes

Setter Method
• Used to change an attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> t.hour = 5
• Good:

>>> f.setHour(5)

Getter Method
• Used to access an attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> x = 3*t.hour
• Good:

>>> x = 3*t.getHour()
10/25/18 Using Classes Effectively 25

Data Encapsulation

class Time(object):
"""INSTANCE ATTRIBUTES:

_hour: the hour [int in 0..23]
_min: the minute [int in 0..59]"""

def getHour (self):
"""Returns: hour attribute"""
return self._hour

def setHour(self, h):
""" Sets hour to h
Pre: h is an int in 0..23"""
assert type(h) == int
assert 0 <= h and h < 24
self._hour = d

Precondition is same
as attribute invariant.

Naming Convention
The underscore means
“should not access the

attribute directly.”

Do this for all of
your attributes

10/25/18 Using Classes Effectively 26

Getter

Setter

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

10/25/18 Using Classes Effectively 27

May ask you to differetiate on the exam

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

10/25/18 Using Classes Effectively 28

May ask you to differetiate on the exam

Where?
Next time.

Exercise: Design a (2D) Circle

• What are the attributes?
§What is the bare minimum we need?
§What are some extras we might want?
§What are the invariants?

• What are the methods?
§With just the one circle?
§With more than one circle?

10/25/18 Using Classes Effectively 29

