
More Recursion

Lecture 15

Announcements for This Lecture

Prelim 1

• Need to be working on A4
§ Instructions are posted
§ Just reading it takes a while
§ Slightly longer than A3
§ Problems are harder

• Lab Today: lots of practice!
§ First 4 functions mandatory
§ Many optional ones too
§ Exam questions on Prelim 2

10/16/18 2More Recursion

• Prelim 1 back today!
§ Access in Gradescope
§ Solution posted in CMS
§ Mean: 71, Median: 74
§ Testing was horrible

• What are letter grades?
§ A: 80 (consultant level)
§ B: 60-79 (major level)
§ C: 30-55 (passing)

Assignments and Labs

Recall: Divide and Conquer

Goal: Solve problem P on a piece of data

10/16/18 More Recursion 3

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts

3. Combine the result

10/16/18 More Recursion 4

H e l l o !

! o l l e H

e l l o !H

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result

10/16/18 More Recursion 5

H e l l o !

! o l l e H

e l l o !H

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result
return right+left

10/16/18 More Recursion 6

H e l l o !

! o l l e H

e l l o !H

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result
return right+left

10/16/18 More Recursion 7

Base Case

Recursive
Case

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result
return right+left

10/16/18 More Recursion 8

Base Case

Recursive
Case

Remove
recursive call

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 9

5 341267

Approach 1

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 10

5 341267

Approach 1

341,267

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 11

5 341267

Approach 1

341,267

commafy

5

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 12

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 13

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 14

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 15

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

267

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

10/16/18 More Recursion 16

5 341267

341,267,

commafy

5341

5

267

5,341 , 267

commafy

Always? When? Always!

Approach 1 Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
1. Handle small data.
if len(s) <= 3:

return s

2. Break into two parts
left = commafy(s[:-3])
right = s[-3:] # Small part on RIGHT
3. Combine the result
return left + ',' + right

10/16/18 More Recursion 17

Base Case

Recursive
Case

How to Break Up a Recursive Function?

def exp(b, c)
"""Returns: bc

Precondition: b a float, c ≥ 0 an int"""

10/16/18 More Recursion 18

Approach 1 Approach 2

12256 = 12 × (12255)

Recursive

12256 = (12128) × (12128)

Recursive Recursive

bc = b × (bc-1) bc = (b×b)c/2 if c even

Raising a Number to an Exponent

Approach 1

def exp(b, c)
"""Returns: bc

Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

bc = b(bc-1)
left = b
right = exp(b,c-1)

return left*right

Approach 2

def exp(b, c)
"""Returns: bc

Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)
10/16/18 More Recursion 19

Raising a Number to an Exponent

Approach 1

def exp(b, c)
"""Returns: bc

Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

bc = b(bc-1)
left = b
right = exp(b,c-1)

return left*right

Approach 2

def exp(b, c)
"""Returns: bc

Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)
10/16/18 20

rightleft

rightleftMore Recursion

Raising a Number to an Exponent

def exp(b, c)
"""Returns: bc

Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)

c # of calls
0 0
1 1
2 2
4 3
8 4
16 5
32 6
2n n + 1

10/16/18 More Recursion 21

32768 is 215
b32768 needs only 215 calls!

Recursion and Objects

• Class Person (person.py)
§ Objects have 3 attributes
§ name: String
§ mom: Person (or None)
§ dad: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes mom and dad

are None if not known

• Constructor: Person(n,m,d)
• Or Person(n) if no mom, dad

10/16/18 More Recursion 22

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
No mom or dad (no ancestors)

2. Break into two parts
Has mom or dad
Count ancestors of each one
(plus mom, dad themselves)

3. Combine the result

10/16/18 More Recursion 23

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
if p.mom == None and p.dad == None:

return 0

2. Break into two parts
moms = 0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads = 0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)

3. Combine the result
return moms+dads

10/16/18 More Recursion 24

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Is All Recursion Divide and Conquer?

• Divide and conquer implies two halves “equal”
§ Performing the same check on each half
§ With some optimization for small halves

• Sometimes we are given a recursive definition
§ Math formula to compute that is recursive
§ String definition to check that is recursive
§ Picture to draw that is recursive
§ Example: n! = n (n-1)!

• In that case, we are just implementing definition
10/16/18 More Recursion 25

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Function to Implement:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome

10/16/18 26More Recursion

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

Halves not the same; not divide and conquer
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive case

Base case

Recursive
Definition

10/16/18 27More Recursion

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

10/16/18 28More Recursion

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

10/16/18 29More Recursion

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

def equals_ignore_case(a, b):
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()

10/16/18 30More Recursion

Use helper functions!
• Pull out anything not

part of the recursion
• Keeps your code simple

and easy to follow

Example: More Palindromes

def ispalindrome3(s):
"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""
return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
if s == '':

return s
Combine left and right
if s[0] in string.letters:

return s[0]+depunct(s[1:])
Ignore left if it is not a letter
return depunct(s[1:])

10/16/18 31More Recursion

Use helper functions!
• Sometimes the helper is

a recursive function
• Allows you break up

problem in smaller parts

.

.

.

.

.

.

.

.

Example: Space Filling Curves

• Draw a curve that
§ Starts in the left corner
§ Ends in the right corner
§ Touches every grid point
§ Does not touch or cross

itself anywhere

• Useful for analysis of
2-dimensional data

Challenge

Starts
Here

Ends
Here

10/16/18 32More Recursion

Hilbert(1):

Hilbert(2):

Hilbert(n): H(n-1)
down

H(n-1)
down

H
(n-1)
left

H
(n

-1
)

rig
ht

Hilbert’s Space Filling Curve

.

.

.

.

.

.

.

.

2n

2n

10/16/18 33More Recursion

Hilbert’s Space Filling Curve

• Given a box
• Draw 2n�2n

grid in box
• Trace the curve
• As n goes to ∞,

curve fills box

Basic Idea

10/16/18 34More Recursion

“Turtle” Graphics: Assignment A4

10/16/18 More Recursion 35

Turn

Move Change Color

Draw Line

