A Mathematical Example: Factorial

- Non-recursive definition:
 \[n! = n \times (n-1) \times \ldots \times 2 \times 1 = n \times (n-1) \times \ldots \times 2 \times 1 \]

- Recursive definition:
 \[n! = n \times (n-1)! \quad \text{for } n \geq 0 \text{ Recursive case} \]
 \[0! = 1 \quad \text{Base case} \]

Factorial as a Recursive Function

```python
def factorial(n):
    # Returns: factorial of n.
    # Pre: n \geq 0 an int
    if n == 0:
        return 1  # Base case(s)
    return n * factorial(n-1)  # Recursive case
```

Example: Fibonacci Sequence

- Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 \[a_0, a_1, a_2, a_3, a_4, a_5, a_6 \]
 - Get the next number by adding previous two
 - What is \(a_0 \)?

- Recursive definition:
 \[a_n = a_{n-1} + a_{n-2} \quad \text{Recursive Case} \]
 \[a_0 = 1 \quad \text{Base Case} \]
 \[a_1 = 1 \quad \text{(another) Base Case} \]

Fibonacci as a Recursive Function

```python
def fibonacci(n):
    # Returns: Fibonacci number.
    # Precondition: n \geq 0 an int
    if n <= 1:
        return 1  # Base case(s)
    return (fibonacci(n-1) + fibonacci(n-2))  # Recursive case
```

Fibonacci: \# of Frames vs. \# of Calls

- Fibonacci is very inefficient.
 - \(\text{fib}(n) \) has a stack that is always \(\leq n \)
 - But \(\text{fib}(n) \) makes a lot of redundant calls

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

Idea: Split data into two parts and solve problem
Divide and Conquer Example

Count the number of 'e's in a string:

```
pe
```

Two 'e's

```

One 'e'
```

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
 - Some data cannot be broken up
 - Have to compute this answer directly
2. Decide how to break up your data
 - Both “halves” should be smaller than whole
 - Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
 - Assume the smaller answers are correct
 - Combining them should give bigger answer

Divide and Conquer Example

```
def num_es(s):
    """Returns: # of 'e's in s""
    # 1. Handle small data
    if s == "":
        return 0
    elif len(s) == 1:
        return 1
        if s[0] == 'e' else 0
    # 2. Break into two parts
    left = num_es(s[0])
    right = num_es(s[1:])
    # 3. Combine the result
    return left+right
```

```

p  e  n  n  e
```

```
deblank(s):
    """Returns: s w/o blanks""
    if s == "":
        return s
    elif len(s) == 1:
        return "" if s[0] == ' ' else s
    left = deblank(s[0])
    right = deblank(s[1:])
    return left+right
```

```
Handle small data
```

```
Break up the data
```

```
Combine answers
```

Minor Optimization

```
def deblank(s):
    """Returns: s w/o blanks""
    if s == "":
        return s
    left = s[0]
    if s[0] == ' ':
        left = ""
    right = deblank(s[1:])
    return left+right
```

```
Eliminate the second base by combining
```

```
Less recursive calls
```

Following the Recursion

```
deblank [a] b c  
 [X]
deblank [a] b c
```

```
deblank [a] b c
```

```
deblank [a] b c
```

```
deblank [b] c
```

```
deblank [b] c
```

```
deblank [c]  
 [X]
deblank [c]  
 [X]
deblank [c]
```

```
deblank [c]  

```
```