A Mathematical Example: Factorial

¢ Non-recursive definition:
nl=nXn-1X .. X2X1
=n(n-1 X ...X2X1)

e Recursive definition:
n!'=n(n-1)! forn=0 Recursive case

0'=1 Base case

What happens if there is no base case?

9/22/18

Factorial as a Recursive Function

def factorial(n):
""Returns: factorial of n.

e n!=n(n-1)!
e 0l=1

return n*factorial(n-1)

What happens if there is no base case?

Pre:n >0 an int"""

ifn==0:
| return 1

Example: Fibonnaci Sequence

e Sequence of numbers: 1,1,2,3,5,8,13, ...
o ay Ay az dai as de
= Get the next number by adding previous two
= What is ag?
e Recursive definition:
= 4, =dp1 + dpo Recursive Case
=aqy=1 Base Case
=a =1 (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

¢ Function that calls itself
= Each call is new frame

def fibonacei(n):
"""Returns: Fibonacei no. 4,

Precondition: n > 0 an int"" = Frames require memory

ifn<=1: = o calls = © memory
| return1
fibonaccil Ii

return (fibonacei(n-1)+
fibonacei(n-R))

Fibonacci: # of Frames vs. # of Calls

* Fibonacci is very inefficient.
= fib(n) has a stack that is always < n
= But fib(n) makes a lot of redundant calls

Path toend =
the call stack

L N

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

- AN

Y Y
Solve Problem P Solve Problem P

H_/

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

One 'e' One 'e'

9/22/18

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
= Some data cannot be broken up
= Have to compute this answer directly
2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
= Assume the smaller answers are correct

= Combining them should give bigger answer

Divide and Conquer Example

def num_es(s): “Short-cut” for
""Returns: # of 'e's in s"") "

1. Handle small data if's[0] == ‘e’
ifg==": return 1

| return 0 / else:

elif len(s) == 1: return 0

| return 1 if s[0] =='¢' else O

2. Break into two parts s[0] s[1:]

left = num_es(s[0]) H . . E
right = num_es(s[1:]) njn

3. Combine the result

return left+right 0 + 2

Exercise: Remove Blanks from a String

def deblank(s):
"Returns: s w/0 blanks""
ifg=="

| return s Handle small data
elif len(s) == 1

| return"if s[0]=="'"else s
} Break up the data
> (s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

Minor Optimization

def deblank(s):

""Returns: s w/o blanks""
ifg=="

| returns

left = s[0] Eliminate the
if s[0]=="" second base
| left =" by combining

right = deblank(s[1:])
(o]
return left+right

Following the Recursion

deblank a b c

EX|E3
[|

NAIRVRIRIR AL
(-] IE =[]

