
1

Type: Set of values and the operations on them

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if have a lot of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

x 2.0

y 3.0

z 5.0

Objects: Organizing Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ These values can change

• It has an ID that identifies it
§ Unique number assigned by Python

(just like a NetID for a Cornellian)
§ Cannot ever change
§ Has no meaning; only identifies

id1

x 2.0

y 3.0

z 5.0

Unique tab
identifier

Classes: Types for Objects

• Values must have a type
§ An object is a value

§ Type of object is its class

• Modules provide classes 
§ Will show how later

• Example: introcs
§ Part of CornellExtensions

§ Just need to import it
§ Classes: Point2, Point3

id1

x 2.0

y 3.0

z 5.0

Point3

class name

The Old Way: Classes vs Types

• Values must have a type
§ An object is a value
§ Object type is a class

• Classes are how we add 
new types to Python

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• Point2
• Window

Types

• int
• float
• bool
• str

Constructor: Function to make Objects

• How do we create objects?
§ Other types have literals
§ Example: 1, 'abc', true
§ No such thing for objects

• Constructor Function:
§ Same name as the class
§ Example: Point3(0,0,0)
§ Makes an object (manila folder)
§ Returns folder ID as value

• Example: p = Point3(0, 0, 0)
§ Creates a Point object
§ Stores object’s ID in p

id2p
Variable
stores ID
not object

instantiated
objectid2

x 0.0

y 0.0

z 0.0

Point3

Constructors and Modules

>>> import introcs

>>> p = introcs.Point3(0,0,0)

>>> id(p)

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module 
that has Point class.

Constructor is function.
Prefix w/ module name.

Shows the ID of p.

Actually a 
big number



2

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• This is the cause of many 
mistakes in this course

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

Objects and Attributes

• Attributes are variables 
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Access: <variable>.<attr>
§ Example: p.x
§ Look like module variables

• Putting it all together
§ p = introcs.Point3(1,2,3)
§ p.x = p.y + p.z

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

5.0x

Call Frames and Objects

• Mutable objects can be 
altered in a function call
§ Object vars hold names!
§ Folder accessed by both 

global var & parameter

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = introcs.Point3(0,0,0)
>>> incr_x(p)

1
incr_x 1

id5q

Global STUFF

Call Frame

id5pid5

0.0
…

Point3

x

Methods: Functions Tied to Objects

• Method: function tied to object
§ Method call looks like a function 

call preceded by a variable name:

⟨variable⟩.⟨method⟩(⟨arguments⟩)
§ Example: p.distanceTo(q)
§ Example: p.abs() # makes x,y,z ≥ 0

• Just like we saw for strings
§ s = 'abracadabra'
§ s.index('a')

• Are strings objects?

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

Surprise: All Values are in Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 'foo'
>>> id(x)

• But they are immutable
§ No string method can alter 

the contents of a string
§ x.replace('o','y') evaluates 

to 'fyy' but x is still 'foo'
§ So we can ignore the folder 'foo'x

'foo'

id6

id6x

includes strings
str

Base Types vs. Classes

Base Types

• Built-into Python

• Refer to instances as values

• Instantiate with literals

• Are all immutable

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate w/ constructors

• Can alter attributes

• Must represent with folders 


