
Conditionals &
Control Flow

Lecture 7

Announcements For This Lecture

Assignment 1
• Should be working on it

§ Have covered everything
§ Extra testing exercises
§ Credit if you turn in A1

• Due Wednesday at mid.
§ Can work at it during lab
§ But labs are due as normal

• One-on-Ones sti
§ Lots of spaces available

Readings
• Thursday: Read 5.1-5.4
• Tuesday: SKIM Chap 4

§ Don’t use Swampy

• Sent out e-mails Sunday
• Will start dropping today

29/13/18 Conditionals & Control Flow

AI Quiz

Announcements For This Lecture

(Optional) Readings
• Sections 5.1-5.7
• Chapter 4 for Tuesday

Assignment 1
• Due Wednesday

§ Due before midnight

§ Can resubmit to Sep. 26

• Sent e-mails yesterday
• Will start dropping today

39/13/18 Conditionals & Control Flow

AI Quiz

Testing last_name_first(n)
test procedure
def test_last_name_first():

"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)

Script code
test_last_name_first()
print('Module name is working correctly')

9/13/18 Conditionals & Control Flow 4

Call function
on test input

Compare to
expected output

Call test procedure
to activate the test

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

9/13/18 Conditionals & Control Flow 5

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print('first is '+str(first))
last = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

9/13/18 Conditionals & Control Flow 6

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

Structure vs. Flow

Program Structure

• Way statements are presented
§ Order statements are listed
§ Inside/outside of a function
§ Will see other ways…

• Indicate possibilities over
multiple executions

Program Flow

• Order statements are executed
§ Not the same as structure
§ Some statements duplicated
§ Some statements are skipped

• Indicates what really happens
in a single execution

9/13/18 Conditionals & Control Flow 7

Have already seen this
difference with functions

Structure vs. Flow: Example

Program Structure

def foo():
print('Hello')

Script Code
foo()
foo()
foo()

Program Flow

>>> python foo.py
'Hello'
'Hello'
'Hello'

9/13/18 Conditionals & Control Flow 8

Statement
listed once

Statement
executed 3x

Bugs can occur when we
get a flow other than one
that we where expecting

Conditionals: If-Statements

Format
if <boolean-expression>:

<statement>
…
<statement>

Example
Put x in z if it is positive
if x > 0:

z = x

9/13/18 Conditionals & Control Flow 9

Execution:

if <boolean-expression> is true, then execute all of the statements

indented directly underneath (until first non-indented statement)

Conditionals: If-Else-Statements

Format
if <boolean-expression>:

<statement>
…

else:
<statement>
…

Example
Put max of x, y in z
if x > y:

z = x
else:

z = y

9/13/18 Conditionals & Control Flow 10

Execution:

if <boolean-expression> is true, then execute statements indented

under if; otherwise execute the statements indented under elsec

Conditionals: “Control Flow” Statements

if b :
s1 # statement

s3

if b :
s1

else:
s2

s3
9/13/18 Conditionals & Control Flow 11

s1

s3

s2

b

s1

s3

b Branch Point:
Evaluate & Choose

Statement: Execute

Flow
Program only
takes one path
each execution

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x
3 return y

max(0,3):

9/13/18 Conditionals & Control Flow 12

max 1

x 0

y 3

Frame sequence
depends on flow

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x
3 return y

max(0,3):

9/13/18 Conditionals & Control Flow 13

max 3

x 0

y 3

Frame sequence
depends on flow

Skips line 2

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x
3 return y

max(0,3):

9/13/18 Conditionals & Control Flow 14

max

x 0

y 3

Frame sequence
depends on flow

Skips line 2

RETURN
3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 15

max 1

x 3 y 0

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 16

max 2

x 3 y 0

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 17

max 3

x 3 y 0

temp 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 18

max 4

x 0 y 0

temp 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 19

max 5

x 0 y 3

temp 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

9/13/18 Conditionals & Control Flow 20

max

x 0 y 3

RETURN 3

temp 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(3,0)?

9/13/18 Conditionals & Control Flow 21

A: 3
B: 0
C: Error!
D: I do not know

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(3,0)?

9/13/18 Conditionals & Control Flow 22

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Local variables last until
§ They are deleted or
§ End of the function

• Even if defined inside if

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(0,3)?

9/13/18 Conditionals & Control Flow 23

A: 3
B: 0
C: Error!
D: I do not know

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(0,3)?

9/13/18 Conditionals & Control Flow 24

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Variable existence
depends on flow

• Understanding flow
is important in testing

Program Flow and Testing

• Must understand which
flow caused the error
§ Unit test produces error
§ Visualization tools show

the current flow for error

• Visualization tools?
§ print statements
§ Advanced tools in IDEs

(Integrated Dev. Environ.)

Put max of x, y in z
print('before if')
if x > y:

print('if x>y')
z = x

else:
print('else x<=y')
z = y

print('after if')

9/13/18 Conditionals & Control Flow 25

Program Flow and Testing

• Call these tools traces

• No requirements on how
to implement your traces
§ Less print statements ok
§ Do not need to word them

exactly like we do
§ Do what ever is easiest

for you to see the flow

• Example: flow.py

Put max of x, y in z
print('before if')
if x > y:

print('if x>y')
z = x

else:
print('else x<=y')
z = y

print('after if')

9/13/18 Conditionals & Control Flow 26

Traces

Watches vs. Traces

Watch

• Visualization tool
(e.g. print statement)

• Looks at variable value
• Often after an assignment
• What you did in lab

Trace

• Visualization tool
(e.g. print statement)

• Looks at program flow
• Before/after any point

where flow can change

9/13/18 Conditionals & Control Flow 27

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')
9/13/18 Conditionals & Control Flow 28

Watches Traces

Example: flow.py

Conditionals: If-Elif-Else-Statements

Format
if <boolean-expression>:

<statement>
…

elif <boolean-expression>:
<statement>
…

…
else:

<statement>
…

Example

Put max of x, y, z in w
if x > y and x > z:

w = x
elif y > z:

w = y
else:

w = z

9/13/18 Conditionals & Control Flow 29

Conditionals: If-Elif-Else-Statements

Format
if <boolean-expression>:

<statement>
…

elif <boolean-expression>:
<statement>
…

…
else:

<statement>
…

Notes on Use

9/13/18 Conditionals & Control Flow 30

• No limit on number of elif
§ Can have as many as want
§ Must be between if, else

• The else is always optional
§ if-elif by itself is fine

• Booleans checked in order
§ Once it finds a true one, it

skips over all the others
§ else means all are false

Conditional Expressions

Format

e1 if bexp else e2
• e1 and e2 are any expression

• bexp is a boolean expression

• This is an expression!

Example

Put max of x, y in z
z = x if x > y else y

9/13/18 Conditionals & Control Flow 31

expression,
not statement

