
1

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print('first is '+str(first))
last = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Structure vs. Flow

Program Structure

• Way statements are presented
§ Order statements are listed
§ Inside/outside of a function
§ Will see other ways…

• Indicate possibilities over
multiple executions

Program Flow

• Order statements are executed
§ Not the same as structure
§ Some statements duplicated
§ Some statements are skipped

• Indicates what really happens
in a single execution

Have already seen this
difference with functions

Structure vs. Flow: Example

Program Structure

def foo():
print('Hello')

Script Code
foo()
foo()
foo()

Program Flow

>>> python foo.py
'Hello'
'Hello'
'Hello'

Statement
listed once

Statement
executed 3x

Bugs can occur when we
get a flow other than one
that we where expecting

Conditionals: If-Statements

Format
if <boolean-expression>:

<statement>
…
<statement>

Example
Put x in z if it is positive
if x > 0:

z = x

Execution:

if <boolean-expression> is true, then execute all of the statements
indented directly underneath (until first non-indented statement)

Conditionals: If-Else-Statements

Format
if <boolean-expression>:

<statement>
…

else:
<statement>
…

Example
Put max of x, y in z
if x > y:

z = x
else:

z = y

Execution:

if <boolean-expression> is true, then execute statements indented
under if; otherwise execute the statements indented under elsec

2

Conditionals: “Control Flow” Statements

if b :
s1 # statement

s3

if b :
s1

else:
s2

s3

s1

s3

s1

b

s1

s3

b Branch Point:
Evaluate & Choose

Statement: Execute

Flow
Program only
takes one path
each execution

max

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

x 3 y 0

temp 3

0 3

Program Flow and Testing

• Call these tools traces

• No requirements on how
to implement your traces
§ Less print statements ok
§ Do not need to word them

exactly like we do
§ Do what ever is easiest

for you to see the flow

• Example: flow.py

Put max of x, y in z
print('before if')
if x > y:

print('if x>y')
z = x

else:
print('else x<=y')
z = y

print('after if')

Traces

Watches vs. Traces

Watch

• Visualization tool
(e.g. print statement)

• Looks at variable value
• Often after an assignment
• What you did in lab

Trace

• Visualization tool
(e.g. print statement)

• Looks at program flow
• Before/after any point

where flow can change

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')

Watches Traces

Example: flow.py

Conditionals: If-Elif-Else-Statements

Format
if <boolean-expression>:

<statement>
…

elif <boolean-expression>:
<statement>
…

…
else:

<statement>
…

Example

Put max of x, y, z in w
if x > y and x > z:

w = x
elif y > z:

w = y
else:

w = z

