
1

One-on-One Sessions

• Started Sunday: 1/2-hour one-on-one sessions
§ To help prepare you for the assignment
§ Primarily for students with little experience

• There are still some spots available
§ Sign up for a slot in CMS

• Will keep running after September 19
§ Will open additional slots after the due date
§ Will help students revise Assignment 1

Recall: The Python API

Function
name

Possible arguments

What the function evaluates to
Module

• This is a specification
§ Enough info to use func.
§ But not how to implement

• Write them as docstrings

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print 'Hello '+n+'!’
print 'How are you?'

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

Preconditions

• Precondition is a promise
§ If precondition is true,

the function works
§ If precondition is false,

no guarantees at all
• Get software bugs when

§ Function precondition is
not documented properly

§ Function is used in ways
that violates precondition

>>> to_centigrade(32)
0.0
>>> to_centigrade(212)
100.0
>>> to_centigrade('32')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

Test Cases: Finding Errors
• Bug: Error in a program. (Always expect them!)
• Debugging: Process of finding bugs and removing them.
• Testing: Process of analyzing, running program, looking for bugs.
• Test case: A set of input values, together with the expected output.

def number_vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters"""
pass # nothing here yet!

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body.

2

Representative Tests

• Cannot test all inputs
§ “Infinite” possibilities

• Limit ourselves to tests
that are representative
§ Each test is a significantly

different input
§ Every possible input is

similar to one chosen
• An art, not a science

§ If easy, never have bugs
§ Learn with much practice

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker White') gives 'White, Walker'

Look at precondition
when choosing tests

Unit Test: A Special Kind of Script

• A unit test is a script that tests another module
§ It imports the other module (so it can access it)
§ It imports the cornell module (for testing)
§ It defines one or more test cases

• A representative input
• The expected output

• The test cases use the cornell function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""

Testing last_name_first(n)
import name # The module we want to test
import cornell # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)

print('Module name is working correctly')

InputActual Output

Expected Output

Using Test Procedures

• In the real world, we have a lot of test cases
§ I wrote 1000+ test cases for a C++ game library
§ You need a way to cleanly organize them

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
cornell.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

No tests happen
if you forget this

