One-on-One Sessions

 Started Sunday: 1/2-hour one-on-one sessions
= To help prepare you for the assignment
= Primarily for students with little experience
* There are still some spots available
= Sign up for a slot in CMS
* Will keep running after September 19
= Will open additional slots after the due date
= Will help students revise Assignment 1

Recall: The Python API
Buncionlil— = — ——
name | e e et
T | 0.2, nass deal Enci
math. ceil(x) d Possible arguments l

I What the function evaluates to

+{* This is a specification
= Enough info to use func.

= But not how to implement
* Write them as docstrings

Anatomy of a Specification
{One line description,)
)\followed by blank line)

def greet(n):
""Prints a greeting to the name n

More detail about the
function. It may be
many paragraphs.

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person to greet AParameter description]

Precondition: n is a string™" Precondition specifies

assumptions we make

print 'Hello '+n+'’
about the arguments

print 'How are you?'

Anatomy of a Specification

{ s 1)
Returns” indicates a
def to_centigrade(x): l fruitful function
converted to centigrade

More detail about the
function. It may be
many paragraphs.

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float""
return 5*(x-32)/9.0

ﬁ Parameter description]

Precondition specifies
assumptions we make
about the arguments

Preconditions

* Precondition is a promise >>> to_centigrade(32)
= If precondition is true, 0.0

the function works >>> to_centigra.de(ﬁlﬁ)

100.0
>>> t0_centigrade('3R")

Traceback (most recent call last):

= If precondition is false,
no guarantees at all

* Get software bugs when

= Function precondition is

File "<stdin>", line 1, in <module>
not documented properly

File "temperature.py", line 19 ...
= Function is used in ways TypeError: unsupported operand type(s)

that violates precondition for - 'str' and 'int'
Precondition violated

Test Cases: Finding Errors

* Bug: Error in a program. (Always expect them!)

* Debugging: Process of finding bugs and removing them.

* Testing: Process of analyzing, running program, looking for bugs.

» Test case: A set of input values, together with the expected output.
Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body.

def number_vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters""
pass # nothing here yet!

Representative Tests

 Cannot test all inputs Representative Tests for

= “Infinite” possibilities number_vowels(w)

¢ Limit ourselves to tests

that are representative * Word with just one vowel
= Each test is a significantly = For each possible vowel!
different input ¢ Word with multiple vowels

= Every possible input is
similar to one chosen

= Of the same vowel

= Of different vowels
* Anart, not a science ¢ Word with only vowels

= If easy, never have bugs « Word with no vowels

= Learn with much practice

Running Example

e The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ")

first = n[:end_first]

last =n[end_first+1:]
return last+', '+first

» Representative Tests:
= last_name_first('Walker White') give 'White, Walker'
= last_name_first('Walker =~ White") gives 'White, Walker'

[Look at precondition
when choosing tests

Unit Test: A Special Kind of Script

* A unit test is a script that tests another module
= It imports the other module (so it can access it)
= It imports the cornell module (for testing)

= It defines one or more test cases
* A representative input

¢ The expected output
e The test cases use the cornell function

def assert_equals(expected,received):
""Quit program if expected and received differ"""

Testing last_name_first(n)

import name # The module we want to test
import cornell # Includes the test procedures

Con)
Fipl €St case m
result = name.last_name_first('Walker White")
cornell.assert_equals('White, Wi lker', result)

Second test case
result = name.last_name_first('Walker White")

cornell.assert_equals('White, Walker', result)

print('Module name is working correctly')

Using Test Procedures

 In the real world, we have a lot of test cases
= [wrote 1000+ test cases for a C++ game library
= You need a way to cleanly organize them

* Idea: Put test cases inside another procedure
= Each function tested gets its own procedure
= Procedure has test cases for that function

= Also some print statements (to verify tests work)

e Turn tests on/off by calling the test procedure

Test Procedure

def test_last_name_first():
""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White")
cornell.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White'")
cornell.assert_equals('White, Walker', result)

Execution of the testing code | INO tests happen
test_last_name_first() if you forget this

print('Module name is working correctly")

