
1

CS 1110 Fall 2018

• Outcomes:
§ Fluency in (Python) procedural programming

• Usage of assignments, conditionals, and loops
• Ability to create Python modules and programs

§ Competency in object-oriented programming
• Ability to recognize and use objects and classes

§ Knowledge of searching and sorting algorithms
• Knowledge of basics of vector computation

• Website:
§ www.cs.cornell.edu/courses/cs1110/2018fa/

Class Structure

• Lectures. Every Tuesday/Thursday
§ Not just slides; interactive demos almost every lecture
§ Because of enrollment, please stay with your section
§ Semi-Mandatory. 1% Participation grade from iClickers

• Section/labs. ACCEL Lab, Carpenter 2nd floor
§ Guided exercises with TAs and consultants helping out

• Tuesday: 12:20, 1:25, 2:30, 3:35
• Wednesday: 10:10, 11:15, 12:20, 1:25, 2:30, 3:35, 7:20

§ Contact Jenna (jls478@cornell.edu) for section conflicts
§ Mandatory. Missing more than 2 lowers your final grade

Class Materials

• Textbook. Think Python, 2nd Ed. by Allen Downey
§ Optional text; only used as a reference
§ Book available for free as PDF or eBook
§ Hardbound copies only available online

• iClicker. Acquire one by next Thursday
§ Will periodically ask questions during lecture
§ Will get credit for answering – even if wrong
§ iClicker App for smartphone is not acceptable

• Python. Necessary if you want to use own computer
§ See course website for how to install the software

Things to Do Before Next Class

1. Register your iClicker
§ Does not count for

grade if not registered

2. Enroll in Piazza

3. Sign into CMS
§ Complete the Quiz
§ Complete Survey 0

4. Complete Lab 0
§ Install (Anaconda) Python
§ Answer online questions

• Everything is on website!
§ Piazza instructions
§ Class announcements
§ Consultant calendar
§ Reading schedule
§ Lecture slides
§ Exam dates

• Check it regularly:
§ www.cs.cornell.edu/

courses/cs1110/2017fa/

Getting Started with Python

• Designed to be used from
the “command line”
§ OS X/Linux: Terminal
§ Windows: PowerShell
§ Purpose of the first lab

• Once installed type “python”
§ Starts an interactive shell
§ Type commands at >>>
§ Shell responds to commands

• Can use it like a calculator
§ Use to evaluate expressions

This class uses Python 3.6

Python and Expressions

• An expression represents something
§ Python evaluates it (turns it into a value)
§ Similar to what a calculator does

• Examples:
§ 2.3

§ (3 * 7 + 2) * 0.1

Literal
(evaluates to self)

An expression with four
literals and some operators

http://www.cs.cornell.edu/courses/cs1110/2012sp/
http://www.cs.cornell.edu/courses/cs1110/2012fa/

2

Type: Set of values and the operations on them

• Type int represents integers
§ values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …

• Integer literals look like this: 1, 45, 43028030 (no commas or periods)

§ operations: +, –, *, //, **, unary –

• Principle: operations on int values must yield an int

§ Example: 1 // 2 rounds result down to 0
• Companion operation: % (remainder)

• 7 % 3 evaluates to 1, remainder when dividing 7 by 3

§ Operator / is not an int operation in Python 3

multiply to power of

Type: Set of values and the operations on them

• Type float (floating point) represents real numbers
§ values: distinguished from integers by decimal points

• In Python a number with a “.” is a float literal (e.g. 2.0)
• Without a decimal a number is an int literal (e.g. 2)

§ operations: +, –, *, /, **, unary –
• Notice that float has a different division operator
• Example: 1.0/2.0 evaluates to 0.5

• Exponent notation is useful for large (or small) values
§ –22.51e6 is –22.51 * 106 or –22510000
§ 22.51e–6 is 22.51 * 10–6 or 0.00002251

A second kind
of float literal

Floats Have Finite Precision

• Python stores floats as binary fractions
§ Integer mantissa times a power of 2
§ Example: 1.25 is 5 * 2–2

• Impossible to write most real numbers this way exactly
§ Similar to problem of writing 1/3 with decimals
§ Python chooses the closest binary fraction it can

• This approximation results in representation error
§ When combined in expressions, the error can get worse
§ Example: type 0.1 + 0.2 at the prompt >>>

mantissa exponent

Type: Set of values and the operations on them

• Type boolean or bool represents logical statements
§ values: True, False

• Boolean literals are just True and False (have to be capitalized)

§ operations: not, and, or
• not b: True if b is false and False if b is true
• b and c: True if both b and c are true; False otherwise
• b or c: True if b is true or c is true; False otherwise

• Often come from comparing int or float values
§ Order comparison: i < j i <= j i >= j i > j
§ Equality, inequality: i == j i != j

"=" means something else!

Type: Set of values and the operations on them

• Type String or str represents text
§ values: any sequence of characters
§ operation(s): + (catenation, or concatenation)

• String literal: sequence of characters in quotes
§ Double quotes: " abcex3$g<&" or "Hello World!"
§ Single quotes: 'Hello World!'

• Concatenation can only apply to strings.
§ 'ab' + 'cd' evaluates to 'abcd'
§ 'ab' + 2 produces an error

The meaning of +
depends on the type

Converting Values Between Types

• Basic form: type(value)
§ float(2) converts value 2 to type float (value now 2.0)
§ int(2.6) converts value 2.6 to type int (value now 2)
§ Explicit conversion is also called “casting”

• Narrow to wide: bool ⇒ int ⇒ float
• Widening. Python does automatically if needed

§ Example: 1/2.0 evaluates to 0.5 (casts 1 to float)
• Narrowing. Python never does this automatically

§ Narrowing conversions cause information to be lost
§ Example: float(int(2.6)) evaluates to 2.0

