CS 1110:
Introduction to Computing Using Python

Lecture 22

Sequence Algorithms

[Andersen, Gries, Lee, Marschner, Van Loan, White]
Announcements

• Final Exam:
 - May 18th, 9am-11:30am
 - Location: Barton Hall Central and East
 - Final Exam conflicts are out
 • Watch email if you have not already heard

• Watch for Lab 13 coming out early

• A5 released over the weekend or next week

• No A6
Recall: Sorting

Pre: b

Post: b sorted

Inv: b sorted, \(\leq b[i..] \) \(\geq b[0..i-1] \)

First segment always contains smaller values

\[
i = 0
\]

while \(i < n \):

Find minimum val in b[i..]

Swap min val with val at i

\[
i = i+1
\]
Box Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

1. \(b[0..k–1]\) is sorted (i.e. its values are in ascending order)
2. Everything in \(b[0..k–1]\) is \(\leq\) everything in \(b[k..\text{len}(b)–1]\)

Given index \(h\) of the first element of a segment and index \(k\) of the element that follows that segment, the number of values in the segment is \(k – h\).

- \(b[h..k–1]\) has \(k – h\) elements in it.
- \(b[h..h–1]\) has 0 elements in it.

\[(h+1) – h = 1\]
Developing Algorithms on Sequences

• Specify the algorithm by giving its precondition and postcondition as pictures.

• Draw the invariant by drawing another picture that “moves from” the precondition to the postcondition
 ▪ The invariant is true at the beginning and at the end

• The four loop design questions
 1. How does loop start (how to make the invariant true)?
 2. How does it stop (is the postcondition true)?
 3. How does the body make progress toward termination?
 4. How does the body keep the invariant true?
Generalizing Pre- and Postconditions

- Find the minimum of a sequence.

 pre: b_x is the min of this segment (b[0])

 $0 \leq x \leq n$

 post: b_x is the min of this segment

 $0 \leq \text{min} \leq n$

 inv: b_x is min of this segment

- Put negative values before nonnegative ones and return the split index.

 pre: $j = 1$, $x = b[0]$

 post: $j = n$

 pre: $k = 0$, $j = n$

 post: $k = j$

 (values in $0..n-1$ are unknown)
Memory is Limited

• Memory was once very limited
• Attempts to use limited memory for multiple purposes led to famous video game bugs:

![Pokemon Red and Blue](image)

![Pacman](image)
Challenges for Today’s Lecture

• Cannot create new lists – *must swap in place*
• Assume you have a swap function:
 - `swap(b, i, j)` swaps elements at i and j
Time is Limited

- Some algorithms take more time
- Nesting loops in A3 made it slow
Challenges for Today’s Lecture

• Cannot create new lists – *must swap in place*
• Assume you have a swap function:
 ▪ `swap(b, i, j)` swaps elements at i and j
• Go through sequence as few times as possible
 ▪ Ideally just once!
Selection Sort

pre: b

post: b

inv: b

First segment always contains smaller values

i = 0
while i < n:
 # Find minimum val in b[i..]
 # Swap min val with val at i
 i = i+1
Algorithm Complexity

• Iterating through a sequence of length \(n \) requires \(n \) operations:

\[
\begin{array}{c}
0 \quad n \\
b
\end{array}
\]

\[\text{for } x \text{ in } b: \]
\[\quad \# \text{ process } x\]

• Nested loops multiply the \# of operations:

\[
\begin{array}{c}
0 \quad m \\
a \\
0 \quad n \\
b
\end{array}
\]

\[\text{for } x \text{ in } a: \]
\[\quad \text{for } y \text{ in } b: \]
\[\quad \quad \# \text{ process } x \text{ and } y\]

Requires \(m \times n \) operations

Note: This slide was not in 9:05 lecture. Not on Final Exam.
Algorithm Complexity

• Nested loops over the same sequence also multiply # of operations:

```
for x in b:
    for y in b:
        # process x and y
```

Requires n^2 operations

Note: This slide was not in 9:05 lecture. Not on Final Exam.
Complexity: Selection Sort

i = 0
while i < n:
 # Find minimum val in b[i..]
 # Swap min val with val at i
 i = i+1

Finding the min value requires its own loop.

How long does this take?

A: \(\sim n \) operations
B: \(\sim n^2 \) operations **CORRECT**
C: \(\sim n^3 \) operations

Note: This slide was not in 9:05 lecture. Not on Final Exam.
QuickSort

- Idea: Pick a *pivot* element \(x \)
- Partition sequence into \(\leq x \) and \(\geq x \)
- Recurse on each partition

pre: \(b[0 \ldots n] \)
post: \(b[0 \ldots n] \) sorted

We will just pick \(b[0] \)

\[
\begin{array}{c}
0 & \ldots & ? & \ldots & n \\
\end{array}
\]

\[
\begin{array}{c}
0 & \ldots & h & \ldots & i & \ldots & i+1 & \ldots & k \\
\end{array}
\]

post: \(b[0 \ldots n] \)

\[
\begin{array}{c}
\leq x & \quad x & \quad \geq x \\
\end{array}
\]

4/27/2017 Sequence Algorithms
Partition Algorithm

- Given a sequence b[h..k] with some value x in b[h]:

 \[
 \begin{array}{c}
 \text{pre: } b \\
 \text{post: } b \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 \hline
 & h & i & i+1 & k \\
 \hline
 \text{x} & \leq x & x & \geq x \\
 \hline
 \end{array}
 \]

- Swap elements of b[h..k] and then store in i:

 \[
 \begin{array}{cccc}
 \hline
 & h & i & i+1 & k \\
 \hline
 \text{change: } b \\
 \text{into } b \\
 \hline
 \text{3 5 4 1 6 2 3 8 1} & \text{1 2 1 3 5 4 6 3 8} \\
 \hline
 \end{array}
 \]

- x is called the pivot value
 - x is not a program variable
 - denotes value initially in b[h]
Partition Algorithm

- Given a sequence \(b[h..k] \) with some value \(x \) in \(b[h] \):

 \[
 \begin{array}{cccc}
 h & & k \\
 \text{pre: } b & x & \text{?} \\
 \end{array}
 \]

- Swap elements of \(b[h..k] \) and then store in \(i \):

 \[
 \begin{array}{cccc}
 h & i & i+1 & k \\
 \text{post: } b & \leq x & x & \geq x \\
 \end{array}
 \]

- Agrees with precondition when \(i = h, j = k+1 \)
- Agrees with postcondition when \(j = i+1 \)
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]
 Returns: pivot index"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] <= x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
Generalizing Pre- and Postconditions

• Dutch national flag: tri-color
 - Sequence of 0..n-1 of red, white, blue "pixels"
 - Arrange to put reds first, then whites, then blues

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>pre: b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
(Values in 0..n-1 are unknown)

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>post: b</td>
<td>reds</td>
<td>whites</td>
<td>blues</td>
</tr>
</tbody>
</table>
```

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>j</td>
<td>k</td>
<td>l</td>
<td>n</td>
</tr>
<tr>
<td>inv: b</td>
<td>reds</td>
<td>whites</td>
<td>?</td>
<td>blues</td>
</tr>
</tbody>
</table>
```

Make the red, white, blue sections initially empty:
- Range i..i-1 has 0 elements
- Main reason for this trick

Changing loop variables turns invariant into postcondition.
Dutch National Flag Variant

- Sequence of integer values
 - ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
 - Only rearrange part of the list, not all

```plaintext
pre:  b |   ?   |
      h   k
```

```plaintext
post: b | < 0 | = 0 | > 0 |
      h   t   i   j   k
```

```plaintext
inv:  b | < 0 |   ?   | = 0 | > 0 |
      h   t   i   j   k
```

```plaintext
pre:  t = h,
     i = k+1,
     j = k
post: t = i
```
def dnf(b, h, k):
 """Returns: partition points as a tuple (i,j)"""
 t = h; i = k+1, j = k;
 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1
 j = j-1
 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)

< 0 ? = 0 > 0
h t i j k
-1 -2 3 -1 0 0 0 6 3

h t i j k
-1 -2 3 -1 0 0 0 6 3

h t i j k
-1 -2 -1 3 0 0 0 6 3

h t j k
-1 -2 -1 0 0 0 3 6 3