Loop Invariants

[Lecture 21]

[Andersen, Gries, Lee, Marschner, Van Loan, White]
Announcements

• Prelim 2 conflicts due by midnight *tonight*
• Lab 11 is out
 ▪ Due in 2 weeks because of Prelim 2
• Review Prelim 2 announcements from previous lecture
• A4 is due Thursday at midnight
• There will only be 5 assignments.
 ▪ Can look at webpage for redistributed weights
Loop Invariants: Eat your Vegetables!

Recall: The while-loop

$$\textbf{while } <\text{condition}> :$$

- statement 1
- ...
- statement n

- Relationship to for-loop
 - Must explicitly ensure condition becomes false
 - *You* explicitly manage what changes per iteration
Example: Sorting

pre: b ?
post: b sorted

$i = 0$
while $i < n$:
 # Find minimum val in $b[i..]$
 # Swap min val with val at i
 $i = i + 1$
Recall: Important Terminology

- **assertion**: true-false statement placed in a program to assert that it is true at that point
 - Can either be a comment, or an assert command

- **invariant**: assertion supposed to "always" be true
 - If temporarily invalidated, must make it true again
 - **Example**: class invariants and class methods

- **loop invariant**: assertion supposed to be true before and after each iteration of the loop

- **iteration of a loop**: one execution of its body
Preconditions & Postconditions

- **Precondition**: assertion placed before a segment
- **Postcondition**: assertion placed after a segment

`# x = sum of 1..n-1`

`x = x + n`

`n = n + 1`

`# x = sum of 1..n-1`

Relationship Between Two

If **precondition** is true, then **postcondition** will be true

4/18/17 Loop Invariants
Solving a Problem

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know
Solving a Problem

x = sum of 1..n
n = n + 1
x = sum of 1..n

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n
Solving a Problem

precondition

x = sum of 1..n

n = n + 1

x = sum of 1..n

postcondition

A: x = x + 1

B: x = x + n

C: x = x + n+1

D: None of the above

E: I don’t know

x contains the sum of these (10)

Remember the new value of n

x contains the sum of these (15)
Invariants: Assertions That Do Not Change

• **Loop Invariant:** an assertion that is true before and after each iteration (execution of repetend)

```python
x = 0; i = 2
while i <= 5:
    x = x + i*i
    i = i + 1
# x = sum of squares of 2..5
```

Invariant:

\[x = \text{sum of squares of } 2..i-1 \]

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

- **Loop Invariant**: an assertion that is true before and after each iteration (execution of repetend)
- Should help you *understand the loop*
- There are good invariants and bad invariants
- **Bad**:
 - $2 \neq 1$
 - True, but *doesn’t help you understand the loop*
- **Good**:
 - $s[0…k]$ is sorted
 - Seems useful in order to conclude that s is sorted.
Key Difference

\[x = 0; \quad i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\[\textbf{while} \quad i \leq 5: \]

\[\begin{align*}
 x &= x + i^2 \\
 i &= i + 1 \\
\end{align*} \]

Post: \(x = \text{sum of squares of } 2..5 \)

\(4/18/17 \) Loop Invariants

\[\text{Invariant:} \quad \text{True when loop terminates} \]

\[\text{Loop termination condition:} \quad \text{False when loop terminates} \]
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\[\text{while } i \leq 5: \]

\[x = x + i^2 \]
\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):
 \[x = x + i*i \]
 \[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1: 2..1 (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\(x = 0; \ i = 2 \)

\# Inv: \(x = \text{sum of squares of 2..i-1} \)

while \(i \leq 5 \):

\[
\begin{align*}
\quad & x = x + i^2 \\
\quad & i = i + 1
\end{align*}
\]

\# Post: \(x = \text{sum of squares of 2..5} \)

Integers that have been processed:
- \(2 \)

Range 2..i-1:
- \(2..2 \)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
& x = x + i^2 \\
& i = i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3

Range 2..i-1: 2..3

4/18/17

Loop Invariants

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: x = sum of squares of 2..i-1

\[
\text{while } i \leq 5:
\]

\[
\begin{align*}
 x &= x + i^2 \\
 i &= i + 1
\end{align*}
\]

Post: x = sum of squares of 2..5

Integers that have been processed: 2, 3, 4

Range 2..i-1: 2..4

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\(x = 0; \ i = 2\)

Inv: \(x = \text{sum of squares of } 2..i-1\)

```python
while i <= 5:
    x = x + i*i
    i = i + 1
```

Post: \(x = \text{sum of squares of } 2..5\)

Integers that have been processed:

Range 2..i-1: 2, 3, 4, 5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[
\begin{align*}
\quad & x = x + i^2 \\
\quad & i = i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: \(2, 3, 4, 5 \)

Range 2..i-1: \(2..5 \)

Invariant was always true just before test of loop condition. So it’s true when loop terminates

Loop Invariants The loop processes the range 2..5
Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k = a
while k <= b:
 process integer k
 k = k + 1
post: integers in a..b have been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

while k <= c:
 k = k + 1
Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed
while k <= c:
 k = k + 1

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

while k <= c:
 # Process k
 k = k + 1

Postcondition: range b..c has been processed
Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

```
while k < n:
    # Process k;
    k = k + 1
# b is True if no int in 2..n-1 divides n, False otherwise
```

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;

 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k +1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

Command to do something

for s = 'ebeee', x = 2

while k < len(s):
Process k

k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.

What indices have been considered? What is the invariant?

A: 0..k A: x = no. adj. equal pairs in s[1..k]
B: 1..k B: x = no. adj. equal pairs in s[0..k]
C: 0..k–1 C: x = no. adj. equal pairs in s[1..k–1]
D: 1..k–1 D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1
 # x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = –1
D: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = −1
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 x = x + 1 if (s[k-1] == s[k]) else 0
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition

k: next integer to process.
What is initialization for k?
A: k = 0
B: k = 1
C: k = –1
D: I don’t know

Which do we compare to “process” k?
A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
Reason carefully about initialization

1. What is the invariant?

```python
# s is a list of ints; len(s) >= 1
# Set c to largest element in s

# Command to do something

# inv:
while k < len(s):
    # Process k
    k = k + 1
# c = largest int in s[0..len(s)-1]
```

Equivalent postcondition
s is a list of ints; len(s) >= 1
Set c to largest element in s

c = ??
k = ??

inv: c is largest element in s[0..k–1]

while k < len(s):
 # Process k
 k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?

 `c` is largest element in `s[0..k–1]`

Equivalent postcondition
Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s
inv: c is largest element in s[0..k–1]
while k < len(s):
 # Process k
 k = k + 1
c = largest int in s[0..len(s)–1]

1. What is the invariant?
2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above
Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s

c = ?? Command to do something
k = ??

inv: c is largest element in s[0..k–1]
while k < len(s):
 # Process k
 k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?
2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k–1 is not empty. You must start with k = 1.
What is the Invariant?

pre: b
post: b sorted

inv: b sorted, ≤ b[i..] ≥ b[0..i-1]

First segment always contains smaller values

i = 0
while i < n:
 # Find minimum val in b[i..]
 # Swap min val with val at i
 i = i+1

Insertion Sort:

sorted, ≤ b[i..] First segment always contains smaller values