Lecture 23

Loop Invariants
Announcements for This Lecture

Assignments
- A6 due on **Wednesday**
 - Task 3 should be done
 - Task 4 this weekend
 - **Next Week**: Steganography
- A7 will be last assignment
 - Will talk about next week
 - Posted on Wednesday
- There is lab next week
 - **No lab** week of Turkey Day

Prelim 2
- Thursday, 7:30-9pm
 - A – J (Uris G01)
 - K – Z (Statler Aud)
 - Conflicts received e-mail
- Will have 4-5 questions
 - Might drop short answer
- Graded by the weekend
 - Returned early next week
 - Regrade policy as before
Recall: **Important Terminology**

- **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 - Can either be a *comment*, or an *assert* command
- **invariant**: assertion supposed to "always" be true
 - If temporarily invalidated, must make it true again
 - **Example**: class invariants and class methods
- **loop invariant**: assertion supposed to be true before and after each iteration of the loop
- **iteration of a loop**: one execution of its body
Assertions versus Asserts

- **Assertions** prevent bugs
 - Help you keep track of what you are doing
- Also **track down bugs**
 - Make it easier to check belief/code mismatches
- The **assert** statement is a (type of) assertion
 - One you are enforcing
 - Cannot always convert a comment to an assert

x is the sum of 1..n

- x
 - ?
- n
 - 1
- x
 - ?
- n
 - 3
- x
 - ?
- n
 - 0

The root of all bugs!
Preconditions & Postconditions

• **Precondition**: assertion placed before a segment
• **Postcondition**: assertion placed after a segment

\[\# \ x = \text{sum of } 1..n-1 \]
\[x = x + n \]
\[n = n + 1 \]
\[\# \ x = \text{sum of } 1..n-1 \]

relationship between two

If **precondition** is true, then **postcondition** will be true
Solving a Problem

x = sum of 1..n
n = n + 1
x = sum of 1..n

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

11/9/17
Loop Invariants
Solving a Problem

precondition

x = sum of 1..n
n = n + 1
x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

11/9/17
Invariants: Assertions That Do Not Change

- **Loop Invariant:** an assertion that is true before and after each iteration (execution of repetend)

\[
x = 0; \quad i = 2
\]

\[
\text{while } i \leq 5:
\]

\[
\begin{align*}
x &= x + i \times i \\
i &= i + 1
\end{align*}
\]

x = sum of squares of 2..5

Invariant:

\[
x = \text{sum of squares of } 2..i-1
\]

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of 2..i-1

while \(i \leq 5 \):

\[x = x + i \times i \]
\[i = i + 1 \]

Post: \(x = \) sum of squares of 2..5

Integers that have been processed:

Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\[
\text{# Inv: } x = \text{sum of squares of } 2..i-1
\]

\textbf{while} \ i \leq 5:

\[
\begin{align*}
x & = x + i \times i \\
i & = i + 1
\end{align*}
\]

\[
\text{# Post: } x = \text{sum of squares of } 2..5
\]

Integers that have been processed:

Range 2..i-1: 2..1 (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[
\begin{align*}
 x &= x + i \times i \\
 i &= i + 1
\end{align*}
\]

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2

Range 2..i-1: 2..2

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of 2..i-1

\textbf{while} \(i \leq 5 \):

\begin{align*}
& x = x + i^2 \\
& i = i + 1
\end{align*}

Post: \(x = \) sum of squares of 2..5

Integers that have been processed: \(2, 3 \)

Range 2..i-1: \(2..3 \)

\[x = 13 \]

\[i = 4 \]

\[i = 2 \]

\[x = x + i^2 \]

\[i = i + 1 \]

\[i \leq 5 \]

false

ture

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; i = 2 \]

\[\# \text{Inv: } x = \text{sum of squares of 2..i-1} \]

\textbf{while} \ i \leq 5:

\[x = x + i \times i \]

\[i = i + 1 \]

\[\# \text{Post: } x = \text{sum of squares of 2..5} \]

Integers that have been processed: \ 2, \ 3, \ 4

Range 2..i-1: \ 2..4

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[
x = 0; \quad i = 2
\]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[
x = x + i^2
\]

\[
i = i + 1
\]

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: \(2, 3, 4, 5 \)

Range \(2..i-1 \): \(2..5 \)

\[x, 13, 29, 54\]

\[i, 6\]

The loop processes the range \(2..5 \)
Invariants: Assertions That Do Not Change

\[x = 0; i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
x &= x + i \times i \\
i &= i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

Invariant was always true just before test of loop condition. So it’s true when loop terminates

The loop processes the range 2..5
Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k = a

while k <= b:
 process integer k
 k = k + 1

post: integers in a..b have been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers \(b..c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))

Process \(b..c \)

Postcondition: range \(b..c \) has been processed
Designing Integer while-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process $b..c$

```
while $k <= c:
    k = k + 1
# Postcondition: range $b..c$ has been processed
```
Designing Integer **while**-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

```plaintext
# Process b..c

# Invariant: range b..k-1 has been processed
while  k <= c:
  k = k + 1
# Postcondition: range b..c has been processed
```

11/9/17 Loop Invariants
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

while k <= c:
 # Process k
 k = k + 1

Postcondition: range b..c has been processed
Finding an Invariant

Make b True if n is prime, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;

 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Equivalent postcondition
Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n
Finding an Invariant

set x to # adjacent equal pairs in s

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition

```
while k < len(s):
    # Process k
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E. I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

\[\text{while } k < \text{len}(s) :\]

\[\text{# Process } k\]

\[k = k + 1\]

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebeee', x = 2
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebeee', x = 2

Equivalent postcondition

Command to do something

Loop Invariants
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = −1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition

Loop Invariants
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k

 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

for s = 'ebeee', x = 2

Equivalent postcondition

Command to do something
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 x = x + 1 if (s[k-1] == s[k]) else 0
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

11/9/17

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Loop Invariants
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):
 # Process k
 k = k + 1
c = largest char in s[0..len(s)-1]

1. What is the invariant?
s is a string; len(s) >= 1

Set c to largest element in s

c = ??

k = ??

inv: c is largest element in s[0..k-1]

while k < len(s):
 # Process k

k = k+1

c = largest char in s[0..len(s)-1]

Equivalent postcondition

1. What is the invariant?
Reason carefully about initialization

1. What is the invariant?

2. How do we initialize \(c \) and \(k \)?

 - **A**: \(k = 0; \ c = s[0] \)
 - **B**: \(k = 1; \ c = s[0] \)
 - **C**: \(k = 1; \ c = s[1] \)
 - **D**: \(k = 0; \ c = s[1] \)
 - **E**: None of the above

s is a string; \(\text{len}(s) \geq 1 \)

Set \(c \) to largest element in \(s \)

\[c = ?? \]

Command to do something

\[k = ?? \]

inv: \(c \) is largest element in \(s[0..k-1] \)

\[\text{while } k < \text{len}(s): \]

<table>
<thead>
<tr>
<th># Process (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[k = k + 1]</td>
</tr>
</tbody>
</table>

\(c \) = largest char in \(s[0..\text{len}(s)-1] \)

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??

k = ??

inv: c is largest element in s[0..k−1]
while k < len(s):
 # Process k
 k = k+1

c = largest char in s[0..len(s)−1]

1. What is the invariant?
2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k−1 is not empty. You must start with k = 1.