Review 7

Sequence Algorithms

Three Types of Questions

- Write body of a loop to satisfy a given invariant.
- Problem 6, Fall 2013 (Final)
- Problem 6, Spring 2014 (Final)
- Given an invariant with code, identify all errors.
- Problem 6, Spring 2014 (Prelim 2)
- Problem 6, Spring 2013 (Final)
- Given an example, rewrite it with new invariant.
- Problem 8, Fall 2014 (Final)

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (i.e. its values are in ascending order)
2. Everything in $\mathrm{b}[0 . . \mathrm{k}-1]$ is \leq everything in $\mathrm{b}[\mathrm{k}$. .len $(\mathrm{b})-1]$

Given index h of the first element of a segment and

$$
(h+1)-h=1
$$

DOs and DON'Ts \#3

- DON'T put variables directly above vertical line.

- Where is j ?
- Is it unknown or $>=x$?

Algorithm Inputs

- We may specify that the list in the algorithm is
- b[0..len(b)-1] or
- a segment b[h..k] or
- a segment b[m..n-1]
- Work with whatever is given!

- Remember formula for \# of values in an array segment
- Following - First
- e.g. the number of values in $b[h . k]$ is $k+1-h$.

Three Types of Questions

- Write body of a loop to satisfy a given invariant.
- Problem 6, Fall 2013 (Final)
- Problem 6, Spring 2014 (Final)
- Given an invariant with code, identify all errors.
- Problem 6, Spring 2014 (Prelim 2)
- Problem 6, Spring 2013 (Final)
- Given an example, rewrite it with new invariant.
- Problem 8, Fall 2014 (Final)

Exercise 6, Fall 2013 Final

$\begin{array}{rlrl} & 0 & \mathrm{k} \\ \text { pre: } \mathrm{b} & \text { sorted } & \end{array}$

	h		k
post: b	unchanged	$\mathrm{b}[0 . \mathrm{k}]$ w/o duplicates	

	0	p	k
	inv: b	unchanged	Unchanged, values all in $b[h+1 . . k]$

- Example:
- Input [1, 2, 2, 2, 4, 4, 4]
- Output [1, 2, 2, 2, 1, 2, 4]

Solution to Fall 2013 Final

	P	h k	
inv: b	unchanged	Unchanged, values all in $\mathrm{b}[\mathrm{h}+1 . . \mathrm{k}]$	$\mathrm{b}[\mathrm{p}+1 . . \mathrm{k}]$ w/o duplicates

\# Assume $0<=\mathrm{k}$, so the list segment has at least one element
$\mathrm{p}=$
$\mathrm{h}=$
\# inv: $\mathrm{b}[\mathrm{h}+\mathrm{l} . \mathrm{k}]$ is original $\mathrm{b}[\mathrm{p}+\mathrm{l} . . \mathrm{k}]$ with no duplicates
\# b[p+l..h] is unchanged from original list w/ values in b[h+l..k]
\# b[0..p] is unchanged from original list
while

Solution to Fall 2013 Final

	P	h k	
inv: b	unchanged	Unchanged, values all in $\mathrm{b}[\mathrm{h}+1 . . \mathrm{k}]$	$\mathrm{b}[\mathrm{p}+1 . . \mathrm{k}]$ w/o duplicates

\# Assume $0<=\mathrm{k}$, so the list segment has at least one element
$\mathrm{p}=\mathrm{k}-\mathrm{l}$
$\mathrm{h}=\mathrm{k}-1$
\# inv: $\mathrm{b}[\mathrm{h}+\mathrm{l} . \mathrm{k}]$ is original $\mathrm{b}[\mathrm{p}+\mathrm{l} . \mathrm{k}]$ with no duplicates
\# b[p+l..h] is unchanged from original list w/ values in b[h+l..k]
\# b[0..p] is unchanged from original list
while

Solution to Fall 2013 Final

	p	h k	
inv: b	unchanged	Unchanged, values all in $\mathrm{b}[\mathrm{h}+1 . . \mathrm{k}]$	$\mathrm{b}[\mathrm{p}+1 . . \mathrm{k}]$ w/o duplicates

\# Assume $0<=\mathrm{k}$, so the list segment has at least one element
$\mathrm{p}=\mathrm{k}-\mathrm{l}$
$\mathrm{h}=\mathrm{k}-\mathrm{l}$
\# inv: $\mathrm{b}[\mathrm{h}+\mathrm{l} . \mathrm{k}]$ is original $\mathrm{b}[\mathrm{p}+\mathrm{l} . . \mathrm{k}]$ with no duplicates
\# b[p+l..h] is unchanged from original list w/ values in b[h+l..k]
\# b[0..p] is unchanged from original list
while $0<=\mathrm{p}$:

Solution to Fall 2013 Final

	p	k	
inv: b	unchanged	Unchanged, values all in $\mathrm{b}[\mathrm{h}+1 . . \mathrm{k}]$	$\mathrm{b}[\mathrm{p}+1 . . \mathrm{k}]$ w/o duplicates

\# Assume $0<=\mathrm{k}$, so the list segment has at least one element
$\mathrm{p}=\mathrm{k}-\mathrm{l}$
$\mathrm{h}=\mathrm{k}-\mathrm{l}$
\# inv: $\mathrm{b}[\mathrm{h}+\mathrm{l} . \mathrm{k}]$ is original $\mathrm{b}[\mathrm{p}+\mathrm{l} . . \mathrm{k}]$ with no duplicates
\# b[p+l..h] is unchanged from original list w/ values in b[h+l..k]
\# b[0..p] is unchanged from original list
while $0<=\mathrm{p}$:
if $b[p]!=b[p+1]$:
$\mathrm{b}[\mathrm{h}]=\mathrm{b}[\mathrm{p}]$
$\mathrm{h}=\mathrm{h}-1$
$\mathrm{p}=\mathrm{p}-1$

Exercise 6, Spring 2014 Final

- Example:
- Input s1 = 'abracadabra', s2 = 'abc'
- Output 'abacaabardr' (or 'aaaabbcrdr')

Solution to Spring 2014 Final

\# convert to a list b
b = list(sl)
\# initialize counters
\# inv: b[0..i-1] in sた; b[j+1..n-1] not in sఓ
while :
\# post: b[0..j] in se; b[i+l..n-l] not in sk
\# convert b back to a string

Solution to Spring 2014 Final

\# convert to a list b
b $=\operatorname{list}(\mathrm{sl})$
\# initialize counters
$\mathrm{i}=0$
$j=\operatorname{len}(b)-1$
\# inv: b[0..i-1] in sた; b[j+1..n-1] not in sఓ
while

\# post: b[0..j] in sk; b[i+l..n-l] not in sk
\# convert b back to a string

Solution to Spring 2014 Final

\# convert to a list b
b $=\operatorname{list}(\mathrm{sl})$
\# initialize counters
$\mathrm{i}=0$
$j=\operatorname{len}(b)-1$
\# inv: b[0..i-1] in sた; b[j+1..n-1] not in s2
while j ! $=\mathrm{i}-\mathrm{l}$:

\# post: b[0..j] in sk; b[i+l..n-l] not in sk
\# convert b back to a string

Solution to Spring 2014 Final

```
\# convert to a list b
b \(=\operatorname{list}(s l)\)
\# initialize counters
\(\mathrm{i}=0\)
\(j=\operatorname{len}(b)-1\)
\# inv: b[0..i-1] in sఙ; b[j+1..n-1] not in s2
while j ! \(=\mathrm{i}-\mathrm{l}\) :
    if \(b[i]\) in \(s 2\) :
        \(\mathrm{i}=\mathrm{i}+1\)
    else:
        b[i], b[j] = b[j], b[i] \# Fancy swap syntax in python
    \(\mathrm{j}=\mathrm{j}-1\)
\# post: b[0..j] in sk; b[i+l..n-1] not in sk
\# convert b back to a string
```


Solution to Spring 2014 Final

```
\# convert to a list b
b \(=\operatorname{list}(s l)\)
\# initialize counters
\(\mathrm{i}=0\)
\(j=\operatorname{len}(b)-1\)
\# inv: b[0..i-1] in sఙ; b[j+1..n-1] not in s2
while j ! \(=\mathrm{i}-\mathrm{l}\) :
    if \(\mathrm{b}[\mathrm{i}]\) in s 2 :
        \(\mathrm{i}=\mathrm{i}+1\)
```



```
    else:
        \(\mathrm{b}[\mathrm{i}], \mathrm{b}[\mathrm{j}]=\mathrm{b}[\mathrm{j}]\), b[i] \# Fancy swap syntax in python
    \(\mathrm{j}=\mathrm{j}-1\)
\# post: b[0..j] in se; b[i+l..n-l] not in sk
\# convert b back to a string
result = ".join(b)
```


Three Types of Questions

- Write body of a loop to satisfy a given invariant.
- Problem 6, Fall 2013 (Final)
- Problem 6, Spring 2014 (Final)
- Given an invariant with code, identify all errors.
- Problem 6, Spring 2014 (Prelim 2)
- Problem 6, Spring 2013 (Final)
- Given an example, rewrite it with new invariant.
- Problem 8, Fall 2014 (Final)

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
$\mathrm{i}=1$
$\mathrm{k}=\operatorname{len}(\mathrm{b})$
\# inv: b[0..i-l] <= z and b[k..] > z
while i!= k:
if $\mathrm{b}[\mathrm{i}]<=\mathrm{z}$:
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
else:

$$
\begin{aligned}
& \mathrm{k}=\mathrm{k}-1 \\
& \mathrm{~b}[\mathrm{i}], \mathrm{b}[\mathrm{k}]=\mathrm{b}[\mathrm{k}], \mathrm{b}[\mathrm{i}] \quad \text { \# python swap }
\end{aligned}
$$

\# post: $\mathrm{b}[0 . \mathrm{k}-\mathrm{l}]<=\mathrm{z}$ and $\mathrm{b}[\mathrm{k} . \mathrm{]}]>\mathrm{z}$
return k

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
$i=1 \quad i=0$
$\mathrm{k}=\operatorname{len}(\mathrm{b})$
\# inv: b[0..i-l] <= z and b[k..] > z
while i!= k:
if $\mathrm{b}[\mathrm{i}]<=\mathrm{z}$:

$$
\mathrm{i}=\mathrm{i}+\mathrm{l}
$$

else:

$$
\begin{aligned}
& \mathrm{k}=\mathrm{k}-1 \\
& \mathrm{~b}[\mathrm{i}], \mathrm{b}[\mathrm{k}]=\mathrm{b}[\mathrm{k}], \mathrm{b}[\mathrm{i}] \quad \text { \# python swap }
\end{aligned}
$$

\# post: $\mathrm{b}[0 . \mathrm{k}-\mathrm{l}]<=\mathrm{z}$ and $\mathrm{b}[\mathrm{k} . \mathrm{]}]>\mathrm{z}$
return k

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
$\mathrm{i}=-1$
$\mathrm{k}=\operatorname{len}(\mathrm{b})$
\# inv: b[0.i. $]<=z$ and $b[k .]>$.
while i ! k :
if $\mathrm{b}[\mathrm{i}+\mathrm{l}]<=\mathrm{z}$:

$$
i=i+l
$$

else:

$$
\begin{aligned}
& b[i+1], b[k-1]=b[k-1], b[i+1] \quad \text { \# python swap } \\
& k=k-1
\end{aligned}
$$

\# post: b[0..k-l] <= z and b[k..] > z
return k

Exercise 6, Spring 2014 Prelim 2

def partition(b, z):
$\mathrm{i}=-1$
$\mathrm{k}=\operatorname{len}(\mathrm{b})$
\# inv: b[0..i] <= z and b[k..] > z
while i = $\mathrm{k}: ~ \mathrm{i}$! $=\mathrm{k}-\mathrm{l}$:
if $b[i+1]<=z$:

$$
\mathrm{i}=\mathrm{i}+\mathrm{l}
$$

else:

$$
\begin{aligned}
& b[i+1], b[k-1]=b[k-1], b[i+1] \quad \text { \# python swap } \\
& k=k-1
\end{aligned}
$$

\# post: $\mathrm{b}[0 . \mathrm{k}-\mathrm{l}]<=\mathrm{z}$ and $\mathrm{b}[\mathrm{k} . \mathrm{]}]>\mathrm{z}$
return k

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' $\mathrm{a} \mathrm{f} \mathrm{g}^{\prime}$ is 4 ' $\mathrm{a} \mathrm{f}^{\prime}$ ' is $2^{\prime} \mathrm{a}$ bc d^{\prime} is 3 .
Precondition: len(s) >= 1 """
$\mathrm{i}=1$
$\mathrm{n}=1$ if s[0] == ' ' else 0
\# inv: $s[0 . \mathrm{i}]$ contains n runs of spaces
while i ! = len(s):
if $s[i]==$ ' and $s[i-1]$!= ' ':
$\mathrm{n}=\mathrm{n}+1$
$\mathrm{i}=\mathrm{i}+1$
\# post: s[0..len(s)-1] contains n runs of spaces return n return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' $\mathrm{a} \mathrm{f} \mathrm{g}^{\prime}$ is 4 ' $\mathrm{a} \mathrm{f}^{\prime}$ ' is $2^{\prime} \mathrm{a}$ bc d^{\prime} is 3 .
Precondition: len(s) >= 1 """
$i=1 \quad i=0$
$\mathrm{n}=1$ if s[0] == ' ' else 0
\# inv: $\mathrm{s}[0 . \mathrm{i}]$ contains n runs of spaces
while i ! = len(s):
if $s[i]==$ ' ' and s[i-1] != ' ':
$\mathrm{n}=\mathrm{n}+\mathrm{l}$
$\mathrm{i}=\mathrm{i}+1$
\# post: s[0..len(s)-1] contains n runs of spaces return n return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' $\mathrm{a} \mathrm{f} \mathrm{g}^{\prime}$ is 4 ' $\mathrm{a} \mathrm{f}^{\prime}$ ' is $2^{\prime} \mathrm{a}$ bc d^{\prime} is 3 .
Precondition: len(s) >= 1 """
$i=1 \quad i=0$
$\mathrm{n}=1$ if $\mathrm{s}[0]==$ ' else 0
\# inv: $s[0 . \mathrm{i}]$ contains n runs of spaces
while i ! $=\operatorname{len}(\mathrm{s})$: i != len(s)-1
if $s[i]==$ ' and $s[i-1]!=$ ' ':
$\mathrm{n}=\mathrm{n}+\mathrm{l}$
$\mathrm{i}=\mathrm{i}+1$
\# post: s[0..len(s)-1] contains n runs of spaces return n return n

Exercise 6, Spring 2013 Final

def num_space_runs(s):
"""The number of runs of spaces in the string s.
Examples: ' a $\mathrm{f} \mathrm{g}^{\prime}$ is 4 'a $\mathrm{f} \mathrm{g}^{\prime}$ is 2 ' a bc d^{\prime} is 3 .
Precondition: len(s) >= 1 """
$i=1 \quad i=0$
$\mathrm{n}=1$ if $\mathrm{s}[0]==$ ' else 0
\# inv: $\mathrm{s}[0 . \mathrm{i}]$ contains n runs of spaces
while i = $=\operatorname{len}(\mathrm{s})$: $\mathrm{i}!=\operatorname{len}(\mathrm{s})-1$

$\mathrm{n}=\mathrm{n}+1$
$\mathrm{i}=\mathrm{i}+1$
\# post: s[0..len(s)-l] contains n runs of spaces return n return n

Three Types of Questions

- Write body of a loop to satisfy a given invariant.
- Problem 6, Fall 2013 (Final)
- Problem 6, Spring 2014 (Final)
- Given an invariant with code, identify all errors.
- Problem 6, Spring 2014 (Prelim 2)
- Problem 6, Spring 2013 (Final)
- Given an example, rewrite it with new invariant.
- Problem 8, Fall 2014 (Final)

Partition Example

\# Make invariant true at start
$j=h$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.j $\mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{t} . \mathrm{k}]$
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$
\# Make invariant true at start
j =
$\mathrm{q}=$
\# inv: $b[h . . j-1]<=x=b[j]<=b[q+1 . . k]$ while :
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$
inv: b

h	j	t	k
$<=\mathbf{x}$	\mathbf{x}	$? ? ?$	$>=\mathbf{x}$

Partition Example

\# Make invariant true at start
$\mathrm{j}=\mathrm{h}$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h..j-l] <= x = b[j] <= b[t..k]
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]:$
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
j =
$\mathrm{q}=$
\# inv: b[h..j-l] <= x = b[j] <= b[q+l..k] while :

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . . \mathrm{k}]$

Partition Example

\# Make invariant true at start
$\mathrm{j}=\mathrm{h}$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.j $\mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{t} . \mathrm{k}]$
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
$j=h$
$\mathrm{q}=\mathrm{k}$
\# inv: b[h..j-l] <= x = b[j] <= b[q+l..k]
while j < q:

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

Partition Example

\# Make invariant true at start
$\mathrm{j}=\mathrm{h}$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h..j-l] <= x = b[j] <= b[t..k]
while j < $\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]:$
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
$j=h$
$\mathrm{q}=\mathrm{k}$
\# inv: b[h..j-l] <= x = b[j] <= b[q+l..k]
while j < q :
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[q]
$q=q-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

Partition Example

\# Make invariant true at start
$j=h$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h..j-l] <= x = b[j] <= b[t..k]
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$
\# Make invariant true at start
$j=$
$\mathrm{m}=$
\# inv: $b[h . j-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[j+\mathrm{l} . . \mathrm{m}]$ while :
| post: b[h.j -1$]<=x=b[j]<=b[j+l . . k]$

inv: b	$<=$ X	x	???	$>=\mathrm{x}$

Partition Example

\# Make invariant true at start
$j=h$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.j $\mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{t} . \mathrm{k}]$
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
$j=h$
$\mathrm{m}=\mathrm{h}$
\# inv: b[h..j-l] <= x = b[j] <= b[j+l..m] while :

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

Partition Example

\# Make invariant true at start
$j=h$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h.j $\mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{t} . \mathrm{k}]$
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]$:
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
$j=h$
$\mathrm{m}=\mathrm{h}$
\# inv: $b[h . j-l]<=x=b[j]<=b[j+l . . m]$
while $\mathrm{m}<\mathrm{k}$:

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

Partition Example

\# Make invariant true at start
$j=h$
$\mathrm{t}=\mathrm{k}+\mathrm{l}$
\# inv: b[h..j-l] <= x = b[j] <= b[t..k]
while $\mathrm{j}<\mathrm{t}-\mathrm{l}$:
if $b[j+1]<=b[j]:$
swap b[j] and b[j+l]
$j=j+1$
else:
swap b[j+l] and b[t-l]
$\mathrm{t}=\mathrm{t}-1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+\mathrm{l} . \mathrm{k}]$

\# Make invariant true at start
$j=h$
$\mathrm{m}=\mathrm{h}$
\# inv: b[h..j-l] <= x = b[j] <= b[j+l..m]
while $\mathrm{m}<\mathrm{k}$:
if $b[m+l]<=b[j]$:
swap b[j] and b[m+l]
swap b[j+l] and b[m+l]
$m=m+1 ; j=j+1$
else:

$$
m=m+l
$$

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{j}-\mathrm{l}]<=\mathrm{x}=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[j+1 . \mathrm{k}]$

What is Fair Game for this Question?

- Segregate from Prelim 2 (see Fall 2016 Final)
- Partition from Lab 13
- Dutch-National-Flag from Lab 13
- The non-recursive sorting algorithms
- Insertion Sort (Lecture 27)
- Selection Sort (Lecture 27)
- But changing invariants changes helpers too
- Binary Search (Lectures 26 \& 27)

Questions?

