Review 3

Exceptions and
Try-Except Blocks

What Might You Be Asked

Create your own Exception class
Write code to throw an exception

Follow the path of a thrown exception

= Requires understanding of try-except blocks

= Simply give us the trace (print statement) results
Write a simple try-except code fragment

= Will only confine it to a single function/fragment

= Look at the sample code read.py from Lecture 21

Error Types in Python

e All errors are instances of class BaseException

e This allows us to organize them 1n a hierarchy

BaseException
T idd
. AssertionError
Exception
T 'My error’
AssertionError — means “extends”

or ““is an instance of”’

11/2/17 Programming with Subclasses

Python Error Type Hierarchy

BaseException
Argument has Argument has
wrong type wrong value
SystemExit Exception (e.g. float([1])) (e.g. float('a’))

AssertionError || AttributeError || ArithmeticError || IOError || TypeError || ValueError

I

ZeroDivisionError || OverflowError

http://docs.python.org/ You will NOT have to
library/exceptions.html memorize this on exam.

11/2/17 Programming with Subclasses 4

Creating Your Own Exceptions

class CustomError(Exception):

"""An instance is a custom exception""" \
pass Only issues 1s choice

of parent error class.
This is all you need Use Exception if you
« No extra fields are unsure what.
_ /

= No extra methods

= No constructors

Inherit everything

11/2/17 Programming with Subclasses

When Do Exceptions Happen?

Automatically Created Manually Created
def foo(): def foo():
x=5/0 raise Exception('I threw it’)

Python creates
Exception for you
automatically

You create Exception
manually by raising it

Raising Errors in Python

Usage: raise <exp>
= exp evaluates to an object
= An instance of Exception
Tailor your error types
* ValueError: Bad value

* TypeError: Bad type

Examples:
= raise ValueError('not in 0..23")
= raise TypeError('not an int')

Only 1ssue 1s the type

def foo(x):
assert x <2, 'My error'

\

Ident1ca1]

def foo(x): /

if x >=2:
m = 'My error’

raise AssertionError(m)

Try-Except: Possible Exam Question

def foo(): What does foo() evaluate to?

x=1

try:

X =2

raise Exception()

X =X+9
except Exception:

X =x+10
return x

Try-Except: Possible Exam Question

def foo():
x=1 < executes this line normally
try:
X=2 < executes this line normally

raise Exception()

X =X+5 <= never reaches this line

except Exception:

X=x+]10 <« but does execute this line

return x << and executes this line

Try-Catch: Possible Exam Question

def foo(): What does foo() evaluate to?
x=1
try:
X =2
raise Bxception() Answer: 12 (2+10)
X =X+9

except Exception:
X =x+10
return x

More Exception Tracing

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second')

print('"Ending second')

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(:)?

More Exception Tracing

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second')

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(:)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

More Exception Tracing

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second')

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(0)?

More Exception Tracing

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second')

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

Exceptions and Dispatch-On-Type

def first(x):
print(‘Starting first.")
try:
second(x)
except IOError:
print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except AssertionError:
print('Caught at second')

print('"Ending second")

def third(x):

print('Starting third.")

if x <O0:

raise I0Error()

elif x > O:

raise AssertionError()
print('"Ending third.")

What is the output of first(-1)?

Exceptions and Dispatch-On-Type

def first(x):
print(‘Starting first.")
try:
second(x)
except IOError:
print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except AssertionError:
print('Caught at second')
print('"Ending second")

def third(x):

print('Starting third.")

if x <O0:

raise I0Error()

elif x > O:

raise AssertionError()
print('"Ending third.")

What is the output of first(-1)?

Starting first.
Starting second.
Starting third.
Caught at first.
Ending first.

Exceptions and Dispatch-On-Type

def first(x):
print(‘Starting first.")
try:
second(x)
except IOError:
print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except AssertionError:
print('Caught at second')

print('"Ending second")

def third(x):

print('Starting third.")

if x <O0:

raise I0Error()

elif x > O:

raise AssertionError()
print('"Ending third.")

What is the output of first(1)?

Exceptions and Dispatch-On-Type

def first(x):
print(‘Starting first.")
try:
second(x)
except IOError:
print('Caught at first')
print('"Ending first')

def second(x):
print('Starting second.")
try:
third(x)
except AssertionError:
print('Caught at second')
print('"Ending second")

def third(x):

print('Starting third.")

if x <O0:

raise I0Error()

elif x > O:

raise AssertionError()
print('"Ending third.")

What is the output of first(1)?

Starting first.
Starting second.
Starting third.
Caught at second.
Ending second.
Ending first.

Programming With Try-Except

def isFloat(s):

"""Returns: True if string
s represents a float.

False otherwige"""

Implement Me

-

_

float(s) returns an
error 1f s does not
represent a float

N

J

Programming With Try-Except

def isFloat(s):

"""Returns: True if string
s represents a float.

False otherwige""" r , 2
Conversion to a

iry: / 5 float might fail)
x = float(s) ~

p
If attempt succeeds,

string s is a float
_ J

return True <«

except:

‘ return False <« Otherwise, it 1s not

Programming With Try-Except

def isFloat(s):

"""Returns: True if string
s represents a float.

False otherwige""" r , D
Conversion to a

iry: / 5 float might fail)
x = float(s) ~

p
If attempt succeeds,

string s is a float
_ J

return True <«

except ValueError as e:

print(e)
return False < Otherwise, it 1S not

Example from Older Version of A7

def fix_bricks(args): e F .
"""Changes constants BRICKS_IN_ROW, Xamples.
BRICK_ROWS, and BRICK_WIDTH to >>> fix_bricks(['3', '4']) # okay

match command line arguments . . _

>>> fix_bricks(['3']) # error
If args does not have exactly & elements,)) AL T
or they do not represent positive integers, ~ >>> fiX_bricks(['3','4",'3']) # error
DON'T DO ANYTHING. . : :

>>> fix_bricks(['a', '1']) # error

If args has exactly two elements, AND
they represent positive integers:
1. Convert the second element to an int
and store it in BRICKS_IN_ROW.,

2. Convert the third element to an int
and store it in BRICK_ROWS.

3. Recompute BRICK_WIDTH formula

Precondition: args is a list of strings."™"
pass

Example from Older Version of A7

def fix_bricks(args):
"""Change constants BRICKS_IN_ROW, BRICK_ROWS, and BRICK_WIDTH"""

global BRICKS_IN_ROW, BRICK_ROWS
global BRICK_WIDTH

if len(args) 1= 2: Need to change
return global variables
try:

b_in_row = int(args[0])
b_rows =int(args[1])
if (b_in_row <= 0 or b_rows <= 0): Will not reach here
return if conversion fails
BRICKS_IN_ROW =b_in_row;
BRICK_ROWS =Db_rows;
BRICK_WIDTH = (GAME_WIDTH - BRICK_SEP_H * (b_in_row+1)) / b_in_row
except:
pass

