
Exceptions and
Try-Except Blocks

Review 3

What Might You Be Asked

• Create your own Exception class
• Write code to throw an exception
• Follow the path of a thrown exception

§ Requires understanding of try-except blocks
§ Simply give us the trace (print statement) results

• Write a simple try-except code fragment
§ Will only confine it to a single function/fragment
§ Look at the sample code read.py from Lecture 21

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/2/17 Programming with Subclasses 3

BaseException

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

__init__(msg)
__str__()
…

BaseException

Exception(BE)

AssError(SE)

Python Error Type Hierarchy

11/2/17 Programming with Subclasses 4

BaseException

ExceptionSystemExit

AssertionError ArithmeticErrorAttributeError ValueErrorTypeErrorIOError …

ZeroDivisionError OverflowError …

Argument has
wrong type

(e.g. float([1]))

Argument has
wrong value

(e.g. float('a'))

You will NOT have to
memorize this on exam.

http://docs.python.org/
library/exceptions.html

Creating Your Own Exceptions
class CustomError(Exception):

"""An instance is a custom exception"""
pass

This is all you need
§ No extra fields
§ No extra methods
§ No constructors

Inherit everything

11/2/17 5Programming with Subclasses

Only issues is choice
of parent error class.
Use Exception if you

are unsure what.

When Do Exceptions Happen?

Automatically Created

def foo():
x = 5 / 0

Manually Created

def foo():
raise Exception('I threw it’)

Python creates
Exception for you

automatically

You create Exception
manually by raising it

Raising Errors in Python

def foo(x):
assert x < 2, 'My error'
…

def foo(x):
if x >= 2:

m = 'My error'
raise AssertionError(m)

…

• Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Examples:
§ raise ValueError('not in 0..23')
§ raise TypeError('not an int')

• Only issue is the type

Identical

Try-Except: Possible Exam Question

def foo():
x = 1
try:

x = 2
raise Exception()
x = x+5

except Exception:
x = x+10

return x

What does foo() evaluate to?

Try-Except: Possible Exam Question

def foo():
x = 1
try:

x = 2
raise Exception()
x = x+5

except Exception:
x = x+10

return x

executes this line normally

never reaches this line

but does execute this line

and executes this line

executes this line normally

Try-Catch: Possible Exam Question

def foo():
x = 1
try:

x = 2
raise Exception()
x = x+5

except Exception:
x = x+10

return x

What does foo() evaluate to?

Answer: 12 (2+10)

More Exception Tracing
def first(x):

print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

More Exception Tracing
def first(x):

print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

More Exception Tracing
def first(x):

print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

More Exception Tracing
def first(x):

print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

Exceptions and Dispatch-On-Type
def first(x):

print('Starting first.')
try:

second(x)
except IOError:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except AssertionError:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print('Ending third.')

What is the output of first(-1)?

Exceptions and Dispatch-On-Type
def first(x):

print('Starting first.')
try:

second(x)
except IOError:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except AssertionError:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print('Ending third.')

What is the output of first(-1)?

Starting first.
Starting second.
Starting third.
Caught at first.
Ending first.

Exceptions and Dispatch-On-Type
def first(x):

print('Starting first.')
try:

second(x)
except IOError:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except AssertionError:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print('Ending third.')

What is the output of first(1)?

Exceptions and Dispatch-On-Type
def first(x):

print('Starting first.')
try:

second(x)
except IOError:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except AssertionError:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print('Ending third.')

What is the output of first(1)?

Starting first.
Starting second.
Starting third.
Caught at second.
Ending second.
Ending first.

Programming With Try-Except

def isFloat(s):
"""Returns: True if string
s represents a float.
False otherwise"""
Implement Me

float(s) returns an
error if s does not
represent a float

Programming With Try-Except

def isFloat(s):
"""Returns: True if string
s represents a float.
False otherwise"""
try:

x = float(s)
return True

except:
return False

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Programming With Try-Except

def isFloat(s):
"""Returns: True if string
s represents a float.
False otherwise"""
try:

x = float(s)
return True

except ValueError as e:
print(e)
return False

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Example from Older Version of A7
def fix_bricks(args):

"""Changes constants BRICKS_IN_ROW,
BRICK_ROWS, and BRICK_WIDTH to
match command line arguments

If args does not have exactly 2 elements,
or they do not represent positive integers,
DON'T DO ANYTHING.

If args has exactly two elements, AND
they represent positive integers:

1. Convert the second element to an int
and store it in BRICKS_IN_ROW.

2. Convert the third element to an int
and store it in BRICK_ROWS.

3. Recompute BRICK_WIDTH formula

Precondition: args is a list of strings."""
pass

• Examples:
>>> fix_bricks(['3', '4']) # okay
>>> fix_bricks(['3']) # error
>>> fix_bricks(['3','4','5']) # error
>>> fix_bricks(['a', '1']) # error

Example from Older Version of A7
def fix_bricks(args):

"""Change constants BRICKS_IN_ROW, BRICK_ROWS, and BRICK_WIDTH"""
global BRICKS_IN_ROW, BRICK_ROWS
global BRICK_WIDTH
if len(args) != 2:

return
try:

b_in_row = int(args[0])
b_rows = int(args[1])
if (b_in_row <= 0 or b_rows <= 0):

return
BRICKS_IN_ROW = b_in_row;
BRICK_ROWS = b_rows;
BRICK_WIDTH = (GAME_WIDTH – BRICK_SEP_H * (b_in_row+1)) / b_in_row

except:
pass

Will not reach here
if conversion fails

Need to change
global variables

