11. Iteration: The while-Loop

Topics:
- Open-Ended repetition
- the while statement
- Example 1: The sqrt Problem
- Example 2: The UpDown Sequence
- Example 3: The Fibonacci Sequence

Open-Ended Iteration

So far, we have only addressed iterative problems in which we know (in advance) the required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended.

Example 1: The Square Root Problem (Again!)

For-Loop Solution

```python
def sqrt(x):
    x = float(x)
    L = x
    W = 1
    for k in range(5):
        L = (L + W)/2
        W = x/L
    return L
```

```
The number of iterations is "hardwired" into the implementation.
5 may not be enough... an accuracy issue
5 may be too big... efficiency issue
```

What we Really Want

```python
def sqrt(x):
    x = float(x)
    L = x
    W = 1
    for k in range(5):
        L = (L + W)/2
        W = x/L
    return L
```

```
Iterate until L and W are really close.
```

While abs(L-W)/L > 10**-12
```
Not this:
for k in range(5):
    L = (L + W)/2
    W = x/L

But this:
while abs(L-W)/L > 10**-12
    L = (L + W)/2
    W = x/L
```

Stir for 5 minutes vs Stir until fluffy.
What we Really Want

\[
\text{while } \frac{|L-W|}{L} > 10^{-12} \\
L = \frac{L + W}{2} \\
W = \frac{x}{L}
\]

This says:
"Keep iterating as long as the discrepancy relative to \(L\) is bigger than \(10^{-12}\)"

What we Really Want

\[
\text{while } \frac{|L-W|}{L} > 10^{-12} \\
L = \frac{L + W}{2} \\
W = \frac{x}{L}
\]

When the loop terminates, the discrepancy relative to \(L\) will be less than \(10^{-12}\)

Template for doing something an Indefinite number of times

```
# Initializations

while not-stopping condition :
  # do something
```

A Common Mistake

\[
\text{while } \frac{|L-W|}{L} < 10^{-12} \\
L = \frac{L + W}{2} \\
W = \frac{x}{L}
\]

Forgetting that we want a "NOT stopping" condition

Example 2

The “Up/Down” Sequence

```
Pick a random whole number between one and a million. Call the number \(n\) and repeat this process until \(n == 1\):
```

- if \(n\) is even, replace \(n\) by \(n/2\).
- if \(n\) is odd, replace \(n\) by \(3n+1\)
The Up/Down Sequence Problem

99	741	157	20	1
298	2224	472	10	4
438	556	68	16	1
219	278	34	8	etc
658	139	17	4	
329	418	52	2	
988	209	26	1	
494	628	13	4	
247	314	40	2	

The Central Repetition

```python
if m%2 == 0:
    m = m/2
else:
    m = 3*m + 1
```

Note cycling once m==1:
1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

Shuts Down When m==1

```python
n = input('m = ')
m = n
nSteps = 0
while m > 1:
    if m%2==0:
        m = m/2
    else:
        m = 3*m + 1
    nSteps = nSteps+1
print n, nSteps, m
```

Avoiding Infinite Loops

```python
nSteps = 0
maxSteps = 200
while m > 1 and nSteps<maxSteps:
    if m%2==0:
        m = m/2
    else:
        m = 3*m + 1
    nSteps = nSteps+1
```

Example 3

Fibonacci Numbers and the Golden Ratio

Here are the first 12 Fibonacci Numbers
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

The Fibonacci ratios 1/1, 2/1, 3/2, 5/3, 8/5 get closer and closer to the “golden ratio”

\[\phi = \frac{1 + \sqrt{5}}{2} \]
Fibonacci Ratios 2/1, 3/2, 5/3, 8/5

Generating Fibonacci Numbers

Here are the first 12 Fibonacci Numbers

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Starting here, each one is the sum of its two predecessors

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Generating Fibonacci Numbers

x = 0
y = 1
for k in range(10):
z = x+y
x = y
y = z

Generating Fibonacci Numbers

k --> 0
x --> 0
y --> 1
z --> 1

Generating Fibonacci Numbers

k --> 1
x --> 1
y --> 1
z --> 1

Generating Fibonacci Numbers

k --> 0
x --> 1
y --> 1
z --> 2

Generating Fibonacci Numbers

k --> 1
x --> 1
y --> 2
z --> 2
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

\[
x = 0 \\
y = 1 \\
\text{for } k \text{ in range(10)}: \\
z = x+y \\
x = y \\
y = z
\]

x --> 2
y --> 3
z --> 3

x = 0
print x
y = 1
print y
for k in range(6):
z = x+y
x = y
y = z
print z

k --> 3
Print First Fibonacci Number >= 1000000

```python
x = 0
y = 1
z = x + y
while y < 1000000:
    x = y
    y = z
    z = x + y
print y
```

Print First Fibonacci Number >= 1000000

```python
past = 0
current = 1
next = past + current
while current < 1000000:
    past = current
    current = next
    next = past + current
print current
```

1346269

Print First Fibonacci Number >= 1000000

```python
past = 0
current = 1
next = past + current
while current < 1000000:
    past = current
    current = next
    next = past + current
print current
```

Reasoning: When the while loop terminates, it will be the first time that current >= 1000000 is true. By print out current we see the first fib >= million

Print Largest Fibonacci Number < 1000000

```python
past = 0
current = 1
next = past + current
while next <= 1000000:
    past = current
    current = next
    next = past + current
print current
```

832040

Print Largest Fibonacci Number < 1000000

```python
past = 0
current = 1
next = past + current
while next < 1000000:
    past = current
    current = next
    next = past + current
print current
```

Reasoning: When the while loop terminates, it will be the first time that next >= 1000000 is true. Current has to be < 1000000. And it is the largest fib with this property

Print Largest Fibonacci Number < 1000000

```python
past = 0
current = 1
next = past + current
while next < 1000000:
    past = current
    current = next
    next = past + current
print next/current
```

Fibonacci Ratios

```
1.000000000000
2.000000000000
1.500000000000
1.666666666667
1.625000000000
1.615384615385
1.619047619048
1.617647058824
1.618181818182
1.617977528090
1.618055555556
1.618025751073
1.618037135279
1.618032786885
```

Reasoning. Heading towards the Golden ratio = (1 + sqrt(5))/2
Fibonacci Ratios

```python
past = 0
current = 1
next = past + current
k = 1
phi = (1+math.sqrt(5))/2
while abs(next/current - phi) > 10**-9
    past = current
    current = next
    next = past + current
    k = k+1
print k,
23 1.618033988749
```

Most Pleasing Rectangle

1

\(\frac{1+\sqrt{5}}{2}\)