
Last Name: First Name: Cornell Netid:

CS 1110 Prelim 2 November 6th, 2012

This 90-minute exam has 6 questions worth a total of 100 points. Scan the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may
tear the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():

if something:

do something

do more things

do something last

You may not use while-loops. Beyond that, you may use any Python feature that you have learned
about in class (particularly for-loops and recursion).

Question Points Score

1 2

2 26

3 18

4 14

5 22

6 18

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and Cornell NetId at the top of each page.

Last Name: First Name: Cornell Netid:

2. [26 points] Classes and Subclasses On the next two pages are the skeletons of two classes.
For Species complete the two properties and a constructor (not str). For Animal com-
plete everything. Enforce invariants in setters and enforce preconditions in both
constructors. Do not write specifications (e.g. for the properties) beyond what is given.

class Species(object):

"""Instance is an endangered species"""

IMMUTABLE ATTRIBUTES

name = '' # Species name; must be a string

MUTABLE ATTRIBUTES

year = 0 # Year on endangered list; int >= 1900 (0 if not on list)

DEFINE PROPERTY name for FIELD name (specification not necessary)

DEFINE PROPERTY year for FIELD year (specification not necessary)

def init (): # Fill in parameters

"""Constructor: species with name s, put on list in year y.

Precondition: s a string, y an int >= 1900 or == 0.

y has default of 0."""

def str (self):

"""Returns: Description of this species

We have completed this method for you. Do not change it."""

suffix = ''
if self.year != 0:

suffix = ' endangered since ' + str(self.year)

return self.name+suffix

Page 2

Last Name: First Name: Cornell Netid:

class Animal(Species):

"""Instance is a species of Animal"""

IMMUTABLE ATTRIBUTES

legs = 0 # Number of legs; int >= 0

DEFINE PROPERTY legs for FIELD legs (specification not necessary)

def init (self,s,x):

"""Constructor: an x-legged animal of species s that is not endangered.

Precondition: s a string, x an int >= 0."""

YOU MUST USE SUPER()

def str (self):

"""Returns: Description of this species

Format is str from the superclass followed by ' with <legs> legs', where

you fill in the value for legs."""

YOU MUST USE SUPER()

3. [18 points] Drawing Folders Suppose you are executing the following sequence of commands
at the interactive prompt (and hence in global space).

>>> x = Species('Indiana Bat', 1967)

>>> y = Animal('Red Wolf', 4)

>>> z = x

>>> x.year = 0

On the next page (or the back), create two columns: one for global space and another for heap
space. Clearly show what is created in each, drawing folders for objects and boxes for variables.
If the value of a variable or attribute changes, cross the old one out and write the new value
out beside it.

Page 3

Last Name: First Name: Cornell Netid:

4. [14 points] Iteration.
Complete procedure clamp(seq,vmin,vmax) below according to the specification. You should
use a for-loop. Do not use recursion or a while-loop. Note that it is a procedure that modifies
the list. It does not return a new value. You do not need to assert function preconditions.

Hint: The function len gives the length of a list.

def clamp(seq,vmin,vmax):

"""Clamp the values in list seq (modifies seq, does not return a copy).

Values less than vmin become vmin; values greater than vmax become vmax

Example: if a = [2, -5, 7], then clamp(a,-4,4) modifies the list a so

that it is now [2, -4, 4].

Precondition: seq is a list of ints. vmax > vmin are ints."""

Page 4

Last Name: First Name: Cornell Netid:

5. [22 points total] Recursion.

(a) [14 points]

m-RNA (messenger RNA) is a chain or string of “nu-
cleotides.” These nucleotides are typically denoted by
the four symbols 'C' (cytosine), 'G' (guanine), 'A'
(adenine), and 'U' (uracil). When writing programs
to process m-RNA, we typically represent them as a
string of these four letters. For example, 'AUUGC' is
an m-RNA sequence.

C G G G left half
G C C C right half reversed

C G G G C C C G

Each nucleotide has a complementary nucleotide with which it bonds; 'C' and 'G' are
a complementary pair, as are 'A' and 'U'. We call the RNA sequence 'CGGGCCCG'
a perfect hinge because, if the right half is reversed and placed under the left half, the
corresponding characters are complementary. This is shown above. From this definition
of a perfect hinge, we can deduce that an empty sequence is a perfect hinge and a
sequence with an odd number of elements is not a perfect hinge.

Structures similar to perfect hinges play an important role in biology. Hence, we often
want to detect whether an m-RNA sequence has this property. Implement the function
below with the given specification. Use recursion, not a loop.

Hint: You may find this problem easier if you write a helper function to check if two
symbols are complimentary pairs. If you do, include a specification docstring. Do not
bother to assert the preconditions, for either ishinge or any helper function.

def ishinge(seq):
"""Returns: True if the m-RNA sequence is a perfect hinge. Returns

False otherwise (e.g. not even, does not match).

Precondition: seq is a string with characters 'C', 'G', 'A', 'U'."""

Page 5

Last Name: First Name: Cornell Netid:

(more space for part a)

(b) [8 points] One recursive function that we saw in class was factorial:

1
2
3
4

def factorial(n):
"""Returns: n!

Precondition: n a nonnegative integer"""

if n==0: # Base case
return 1

Recursive case

return n*factorial(n-1)

Evaluate the recursive call factorial(2) until the base case completes its return-statement
at line 2 (but before the frame is erased and the value is returned). Draw the call stack
at this point in time. The stack will have 3-4 call frames.

Page 6

Last Name: First Name: Cornell Netid:

6. [18 points total] Short Answer.
Answer the following questions. Each answer will require multiple sentences, but should not
require more than a paragraph.

(a) [4 points] What is the difference between is and ==? Give an example of when you would
want to use each of these operators.

(b) [4 points] What is dispatch-on-type? How does it apply to error handling in Python?

(c) [4 points] What is the bottom-up rule? How does it relate to overriding?

Page 7

Last Name: First Name: Cornell Netid:

(d) [4 points] Explain the difference between interface and implementation.

(e) [2 points] Is the following function definition legal? Why or why not?

def absmax(x,y=0,z):
"""Returns: the maximum absolute value of x, y, and z.

Precondition: x, y, and z are numbers (int or float)"""

return max(abs(x),abs(y),abs(z))

Page 8

