
Last Name: UTION First Name: SOL Cornell NetID: CS1110

Circle your lab: Tu 12:20 red/orange Tu 12:20 blue Tu 1:25 Tu 2:30 Tu 3:35

W 12:20 W 1:25 red/orange W 1:25 blue W 2:30 W 3:35

Solution: CS 1110 Prelim 1 March 11th, 2014

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page, and circle your lab time on the top of the first page of the exam.

Solution: Every time a student doesn’t do this, somewhere, a kitten weeps.

More seriously, we sometimes have exams come apart during grading, so it is actually important
to write your name on each page. Also, remember that if we need to figure out your lab section
at the end of the grading session, our chances of putting it the wrong pile, and thus you not
being able to find it when you get to lab, grow high.

2. [12 points] Two students were assigned to diagram the execution of the following code.

1 def h(y):

2 y = x[1] - y

3 return y

4

5 def g(z, x):

6 x[0] = x[0] - z

7 return x

8

9 def f(x, y, z):

10 x = g(y, z)

11 return h(x[0])

12

13 x = [2,3]

14 y = [4,5]

15 x[1] = f(x, 3, y)

After executing the whole program they handed in the diagrams below. You are their grader;
please mark up each student’s solution as follows: (1) Draw an X through anything that is
present that should not be; (2) circle anything that is present and should be, but has the
wrong value or name; and (3) write in anything that is missing. You may wish to do this
question by first drawing the relevant frames and objects yourself.

Last Name:UTION First Name: SOL Cornell NetID: CS1110

f: 10 11

x yid1

return: -3

return: id1

id2

g: 6\ 7\

z 0
2\ -3 3

0 1

x id1

y id2

z 0

return: -2, -3

h: 2\ 3\

list
id1

4\ -2 5\ -3
0 1 list

id2

f: 10 11

x yid1 id2

return: 2

return: id2

3

h g1 id2

z id2

g: 6\ 7\

z x3
2\ 1 3\ 1

0 1

x id1

y id2

id2 x[0] 1

return: 1

h: 2\

y x[0]

list
id1

4 5
0 1 list

id2

Solution: -.5 for each incorrect thing For items where something needed to be added, for
example a variable, one gets the point even if the value inside is incorrect. (This way, there is
even weight to adding something or crossing something off.)

f: 10 11

x yid1

return: -3

return: id1

id2

g: 6\ 7\

z 0
2\ -3 3

0 1

x id1

y id2

z 0

return: -2, -3

h: 2\ 3\

list
id1

4\ -2 5\ -3
0 1 list

id2

f: 10 11

x yid1 id2

return: 2

return: id2

3

h g1 id2

z id2

g: 6\ 7\

z x3
2\ 1 3\ 1

0 1

x id1

y id2

id2 x[0] 1

return: 1

h: 2\

y x[0]

list
id1

4 5
0 1 list

id2

Page 2

Last Name:UTION First Name: SOL Cornell NetID: CS1110

3. [11 points] Implement redact and after so that they meet their specifications.

def redact(s):

"""Returns: a copy of string s where the all but the first and last letter have

been replaced by 3 x's.

If s contains fewer than 3 characters, returns a copy of s.

Precondition: s contains only lowercase letters; it may be empty.

Examples:

'apple' -> 'axxxe'

'banana' -> 'bxxxa'

'preliminary' -> 'pxxxy'

'a' -> 'a'

"""
Solution:

if len(s) <= 2:

return s[:]

else:

lastindex = len(s) - 1

return s[0] + 'xxx' + s[lastindex]

+1 correct if +1 return *copy* of s if too short +1 s[0] +1 s[lastindex] (however defined) +1
concatenation

def after(s, c, n):

"""Returns: the substring of s that starts after the first occurrence

of character c and is n characters long.

Precondition:

s is a string containing only lowercase letters, and has at least one

occurrence of c in it.

c is a one-character string

n is a non-negative int

There are at least n characters in s after the first occurrence of c.

Examples:

after('aloha', 'a',3) -> 'loh'

after('aloha', 'a',4) -> 'loha'

after('bananaphone', 'n', 6) -> 'anapho'

"""

Solution:

startloc = s.index(c) + 1

return s[startloc:startloc+n]

+1 find index of c in s +1 add a one to that to start +1 string slice of s +1 first index of slice
is the start +1 last index is off by n +1 for both this and the previous function: return instead
of print

Page 3

Last Name:UTION First Name: SOL Cornell NetID: CS1110

4. [13 points] Assume that inside a module named transcript2 is the definition of class Titem2,
which is an extension of class Titem from Lab 3. Titem2s have the following attributes:

name non-empty string of lowercase letters followed by numbers

credits positive int

gradeval positive float

and are created by calls like transcript2.Titem2('this should have said cs1CS1',4,'A+')
(if transcript2 has been imported).

We define the GPA contribution of a Titem2 as its number of credits times its gradeval. For
example, for the Titem2 created by the call above, the GPA contribution is 4 × 4.3 = 17.2.

Complete the function definition below so that it meets its specification. Note that we already
wrote a line of code for you.

def separate(sourcelist, threshold, highlist, lowlist):

"""Appends to list highlist the Titem2s from sourcelist whose GPA

contribution [see definition above] is greater than or equal to threshold,

and appends to list lowlist the other items in sourcelist.

Precondition:

sourcelist is a (possibly empty) list of Titem2s

threshold is a float or int

highlist and lowlist are (possibly non-empty) lists."""

For an example, see text at the bottom of this page.

MAKE SURE YOU SEE THIS LINE, AND INDENT RELATIVE TO IT

for item in sourcelist:

Solution:

if item.credits*item.gradeval >= threshold:

+1 use of if

+1 correct inequality with threshold

+1 access of attribute credits

+1 used "item." for credits

+1 access of attribute gradeval

+1 used "item." for gradeval

highlist.append(item)

+1 use of append

+1 mention of highlist

+1 list name goes in front of the dot

+1 mention of item

+1 thing being appended goes in parens

else:

+ 1 use of an else

lowlist.append(item)

If something here is inconsistent with the

understanding in the previous list access line,

the corresponding point granted above should be deducted

+1 no return statement anywhere

Page 4

Last Name:UTION First Name: SOL Cornell NetID: CS1110

Illustrative example: let id1 be the ID of a Titem2 with GPA contribution 8, and id2 be the ID
of a Titem2 with GPA contribution 16. Suppose x is a 2-item list holding id1 and id2, y is an
empty list, and z is the list [7]. Then, the result of the call separate(x, 10, y, z) is that:

x remains the same;
The list that y refers to is modified to be a 1-item list containing id2;
The list that z refers to is modified to be a 2-item list containing the number 7 and id1.

Page 5

Last Name:UTION First Name: SOL Cornell NetID: CS1110

5. [5 points] Assume that separate from the previous question is (correctly) defined in module
prelim1. Now, suppose the following sequence of statements is executed.

import transcript2

import prelim1

nextlist = [transcript2.Titem2('class1', 12, "A+"),

transcript2.Titem2('class2', 1, "B-"),

transcript2.Titem2('class3', 1, "B")]

high = []

low = [transcript2.Titem2('engl9999', 2, "B-"),

transcript2.Titem2('is666', 2, "B-")]

prelim1.separate(nextlist, 12, high, low)

high[0].name = 'FAKE'

print nextlist[0].name

Write down what the resulting printout(s) or error(s) are. Then explain your answer in one to
three sentences.

Solution: The word ’FAKE’ gets printed out. Function separate will append nextlist[0] in
high at index 0, so nextlist[0] and high[0] are references to the same object. Hence a change to
high[0] is a change to nextlist[0].

+1 for understanding that nextlist[0] will be appended to the end of high
+3 explaining that this means high[0] and nextlist[0] are the same thing. (This is probably all
or none)
+1 for noting that the change to high[0] therefore is also a change to nextlist[0]
-1 for each clearly false statement
So, no credit for guessing that the output will be ’FAKE’ if the justification is not correct.

Note: we gave a point for noting that assigning ’FAKE’ as the name of a Titem2 violates the
precondition, and so is a conceptual error. However, it does not cause Python to halt, so the
last line is executed.

6. [5 points] Complete this function definition according to its specification. One or two lines of
code suffices.

def avg(inlist):

"""Returns: float value of the average of the values in list inlist.

Pre: inlist a non-empty list, each item either an int or a float."""

The average of a list of numbers is the sum of the values in the list

divided by the length of the list.

Solution:

Page 6

Last Name:UTION First Name: SOL Cornell NetID: CS1110

return sum(inlist)/float(len(inlist))

+1 sum

+1 len

+1 inlist is the argument for sum

+1 inlist is the argument for len

+1 correct type conversion

Page 7

Last Name:UTION First Name: SOL Cornell NetID: CS1110

7. [5 points] Consider the following function definition, which makes use of the avg function from
the previous question.

def string_avg(nums_as_str):

"""Returns: float value of the average of the values represented

by nums_as_str.

Examples: input ' 1. 3.5 6 ' -> output 3.5

input '2 17.6' -> output 9.8

Pre: nums_as_str is a string representing a non-empty sequence of numbers

separated by whitespace.

"""

return avg(nums_as_str.split())

Unfortunately, even if function avg is implemented correctly, string_avg is not correct, because
nums_as_str.split() is a list of strings, which avg is not expecting as input.

Rewrite the last line of string_avg, using a call to map, to fix this error. One to three lines of
code suffices.

Solution: OK if they use iteration/for loop instead

return avg(map(float, nums_as_str.split()))

+1 call to map has two arguments

+1 its second argument is (equivalent to) nums_as_str.split()

+1 refers to the float function

+1 did not include parenthesis after function name (hopefully "float")

+1 applies avg to the result of map, and everything else checks

out syntactically/semantically

Did you write your name & netID on each page, circle your lab on the front, and carefully re-read
all instructions and specifications?

Page 8

