
Last Name: First Name: Cornell Netid:

CS 1110 Final December 7th, 2012

This 150-minute exam has ?? questions worth a total of ?? points. Scan the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may
tear the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():

if something:

do something

do more things

do something last

Unless you are explicitly directed otherwise, you may use anything you have learned in this course.

Run LATEX again to produce the table

The Important First Question:

1. [2 points] Write your last name, first name, and Cornell NetId at the top of each page.

Last Name: First Name: Cornell Netid:

Throughout this exam, there are several questions on sequences (strings, lists, and tuples). All
sequences support slicing. In addition, you may find the following expressions below useful
(though not all of them are necessary).

Expression Description

len(s) Returns: number of elements in sequence s; it can be 0.

x in s Returns: True if x is an element of sequence s; False otherwise.

s.index(x) Returns: index of the FIRST occurrence of x in s.
Raises a ValueError if x is not found.

s.rindex(x) Returns: index of the LAST occurrence of x in s.
Raises a ValueError if x is not found.

s.count(x) Returns: number of times x appears in s. Could be zero

s.append(x) (Lists Only) Adds x to the end of list s, increasing length by 1.

2. [?? points total] Classes and Subclasses
In Assignment 7 you got experience with GRectangle and GEllipse which extended GObject.
They did not have any new attributes beyond those in GObject, but behaved very differently.
This question deals with three very similar classes: Shape, Rectangle, and Circle.

These classes are similar to those in A7 except for two very important details. First of all, there
is no drawing code. More importantly they do not use the advanced keyword arguments
used by Kivy. The expression **keyword should not appear anywhere in your solution.

(a) [8 points] The skeleton for class Shape is provided on the next page. The attributes are
immutable; you are to implement properties that enforce this. In addition, you should
complete the constructor and method str according to their specification. Your con-
structor must enforce all invariants.

(b) [10 points] You are to create the classes Rectangle and Circle, each of which is a subclass
of Shape. We have not provided you with any skeleton code for these classes; you are to
implement everything yourself.

The classes have no new attributes beyond those inherited from GObject. For each class
implement a constructor and one other method, according to the following constraints.

• The constructor for Rectangle should have an header that looks exactly like the
constructor for Shape, includeing default values. The body of this constructor should
be a single line call to super.

• The constructor for Circle should have three parameters: x, y, and radius. Using
super, it should set the width and height attributes to the diameter (= 2r).

• Both classes should have a method calculateArea(), which returns the area of the
shape. For class Circle, you may use the constant PI in module math. Remember
that the area of a circle is πr2.

You can assume that math is imported; you do not need to write an import statement in
your code. Implement your classes on the blank page after the class Shape.

Page 2

Last Name: First Name: Cornell Netid:

class Shape(object):

"""Instance is 2-dimensional geometric shape"""

IMMUTABLE ATTRIBUTES

x = 0.0 # x-coordinate of bottom-left corner; must be a float.

y = 0.0 # y-coordinate of bottom-left corner; must be a float.

width = 0.0 # shape width; must be a float >= 0.

height = 0.0 # shape height; must be a float >= 0.

DEFINE PROPERTY x for FIELD x (specification not necessary)

@property

def x(self):

return self. x

DEFINE PROPERTY y for FIELD y (specification not necessary)

@property

def y(self):

return self. y

DEFINE PROPERTY width for FIELD width (specification not necessary)

@property

def width(self):

return self. width

DEFINE PROPERTY height for FIELD height (specification not necessary)

@property

def height(self):

return self. height

def init (self, x=0.0, y=0.0, width=0.0, height=0.0): # Fill in

"""Constructor: shape with given values x, y, width, and height (in order).

Precondition: x, y, width, and height are floats with width, height >= 0.0.

All parameters have a default of 0.0."""

assert type(x) == float

assert type(y) == float

assert type(width) == float and width >= 0.0

assert type(height) == float and height >= 0.0

self. x = x

self. y = y

self. width = width

self. height = height

def str (self):

"""Returns: Description of shape geometry in format '[x,y,width,height]'.
return ('['+str(self.x)+sq,+str(self.y)+','+

str(self.width)+','+str(self.height)+']')

Page 3

Last Name: First Name: Cornell Netid:

(Answer Question ?? (??) here)

class Rectangle(Shape):
"""Instance is a rectangular shape"""

def init (self, x=0.0, y=0.0, width=0.0, height=0.0):

"""Constructor: shape with given values x, y, width, and height (in order).

Precondition: x, y, width, height are floats with width, height >= 0.0."""

Automatically enforces precondition

super(Rectangle,self). init (x,y,width,height)

def calculateArea(self):

"""Returns: Area of this rectangle."""

return self.width*self.height

class Circle(Shape):
"""Instance is a circular shape"""

def init (self, x, y, radius):

"""Constructor: shape with given values x, y, and radius (in order).

Precondition: x, y, radius are floats."""

Automatically enforces precondition

super(Circle,self). init (x,y,radius*2,radius*2)

def calculateArea(self):

"""Returns: Area of this circle."""

return math.pi*(self.width/2.0)*(self.width/2.0)

3. [?? points total] Call Frames and Diagrams

Suppose you were to modify class Shape to include the following method.

def contains(self,q):

"""Returns: True if point q is in this Rectangle; False otherwise.

Precondition: q is a list [x,y]."""

1 in x = self.x < q[0] and q[0] < self.x+self.width

2 in y = self.y < q[1] and q[1] < self.y+self.height

3 return in x and in y

Consider then the following python code.

rect = Rectangle(0.0,0.0,1.0,2.0)

circle = Circle(1.0,1.0,3.0)

shape = rect

p = [1.0, 2.0]

value = shape.contains(p)

Page 4

Last Name: First Name: Cornell Netid:

(a) [10 points] Execute the code on the previous page in global space. In other words you
should draw all the variables in global space, as well as any folders created in heap space.
Do not worry about call frames (yet). You do not have to draw the object partitions.

41280452
rect 41280452

Heap SpaceGlobal Space

circle

shape

54013827

41280452
__init__(s,x=0.0,y=0.0,width=0.0,height=0.0)
__str__()

Shape

__init__(s,x=0.0,y=0.0,width=0.0,height=0.0)
calculateArea()

Rectangle

x 0.0

y 0.0

width 1.0

height 2.0

p 38523413

value False

54013827

__init__(s,x=0.0,y=0.0,width=0.0,height=0.0)
__str__()

Shape

__init__(s,x,y,radius)
calculateArea()

Circle

x 1.0

y 1.0

width 6.0

height 6.0

38523413
list

0 1.0

1 2.0

(b) [10 points] Draw your execution of the call shape.contains(p). You will draw what the
call frame looks like at four points in time: when the function starts, and once after it
completes each of the line in the function. You do not need to redraw the folders for shape
and p; simply use the folder names for your answer in part (??).

1contains

self 41280452

q 38523413

2contains

self 41280452

q 38523413

in_x False

3contains

self 41280452

q 38523413

in_x False

in_y False

contains

self 41280452

q 38523413

in_x False

in_y False

Page 5

Last Name: First Name: Cornell Netid:

4. [14 points] Recursion

We want to compress strings that have long sequences of equal characters. For example, we
want to compress 'bbbbaaa$$$$$$$$$$$$$$$$d' to 'b4a3$16d1'. In the compression, each
sequence of equal characters is given by the character followed by the length of the sequence.
Write the function compress to do this. Use no loops; use only recursion. You may use the
function eq chars specifed below as a helper. Do not implement eq chars.

Hint: The base case is not necessarily a string with one character.

def eq chars(s,i):

"""Returns: length of sequence of equal characters starting at s[i].

Examples: eq chars('aaaxxyx',0) is 3 and eq chars('aaaxxyx',5) is 1

Precondition: s is a string, 0 <= i < len(s)."""

def compress(s):

"""Returns: the compression of s, as explained above.

Precondition: s a nonempty string with no digits 0..9."""

num = eq chars(s,0)

BASE CASE

if num == len(s): # Only one character type
return s[0]+str(num)

RECURSIVE CASE

return s[0]+str(num)+compress(s[num:])

5. [?? points total] Exceptions and Dispatch-on-Type
In all of the questions below, you may assume that ValueError and TypeError are subclasses
of StandardError, but neither is a subclass of the other.

(a) [9 points] Suppose you are given the following function definitions.

def first(n):

1 x = 0

2 try:

3 x = second(n)

4 except StandardError:

5 x = x+1

6 return x

def second(n):

7 y = 2

8 try:

9 y = third(n)

10 except ValueError:

11 y = y+5

12 return y

def third(n):

13 if n == 0:

14 raise ValueError()

15 elif n == 1:

16 raise TypeError()

17 return n+10

Page 6

Last Name: First Name: Cornell Netid:

Give the value of each function call below. If there is no value (e.g. program crashes),
tell us that. To get full credit, explain how how the call recovers from errors, if it
recovers at all, with the line numbers provided.

i. first(0)
Answer is 7. Call raises ValueError at 14, caught at 10. Assigns y = 2+5 = 7.

ii. first(1)
Answer is 1. Call raises TypeError at 16, caught at 4. Assigns x = 0+1 = 1.

iii. first(2)
Answer is 12. Call successfully completes third with value 2+10 = 12.

(b) [7 points] The method eq is used to define == on objects. When sorting objects, we
need the comparison operators (e.g. <, >, <=, and >=). We implement these via the method
cmp specified below. Implement this method for the class Cornellian, paying special

attention to how it should handle errors.

class Cornellian(object):
"""Instance is a person at Cornell."""

name = '' # Name of person; a string in format 'last, first'
netid = '' # Netid of person; a string of 2-3 letters and a number

...

def cmp (self,other):
"""Returns: -1, 0, 1 indicating whether self is less than, equal to, or

greater than other (e.g. -1 means self < other).

Raises a TypeError if other is not an instance of Cornellian.

To compare self and other, first compare names as strings. If names are

equal, compare netids as strings. (Recall we can always compare strings

with < and >). If both attributes are equal, return 0."""

Check that other has right type

if not isinstance(other,Cornellian):
raise TypeError()

Check names

if self.name < other.name:
return -1

elif self.name > other.name:
return 1

Check netids

if self.netid < other.netid:
return -1

elif self.netid > other.netid:
return 1

return 0

Page 7

Last Name: First Name: Cornell Netid:

6. [16 points] While-Loops and Lists

1
2 0
5 6 -1
4 -2 3 8

 1 2 5 4
 0 6 -2
-1 3
 8

Triangular,
Increasing

Triangular,
Decreasing

A triangular array is a ragged list whose rows start (end) at size
one and increase (decrease) by one each row. Examples of triangular
arrays are shown to the right. These arrays have applications in
scientific computation.
As with images in Assignment A6, we can talk about the transpose of
a triangular array. The transpose is a triangular array with rows and
columns swapped with each other. The two triangular arrays shown
to the right are the transpose of one another.

Complete the function transpose, which takes an increasing triangular array and returns
the (decreasing) transpose of the original, by filling in the blanks below. Note that the loop
invariants are given. Solutions that do not preserve the invariant will lose points.

def transpose(b):

"""Returns: a new list which is the transpose of b.

Precondition: b is a list representing an increasing triangular array."""

result = []

i = 0

inv: result[0..i-1] contains rows 0..i-1 of the transpose

while i < len(b):

Initialize whatever you need for inner invariant here

k = 0

row = []

inv: row[0..k-1] contains elements 0..k-1 of column being transposed

while k < len(b)-i:

row.append(b[k+i][i])

k = k+1

result.append(row)

i = i +1

return result

Page 8

Last Name: First Name: Cornell Netid:

7. [?? points total] Sorting
The act of sorting is taking a list with given precondition, and rearranging the elements so that
the list satisfies the following postcondition.

0 h k len(b)

pre: b ???

0 h k len(b)

post: b sorted

(a) [6 points] Give the loop invariant for sorting using insertion sort. You must write the
invariant using our pictoral representation. Your placement of variables should be clear.

0 h i k len(b)

inv: b sorted ???

(b) [12 points] Implement the function insertion sort below. You do not need to state the
invariant above, but you must follow it. Answers that do not follow the invariant can get
at most half-credit. If you need any helper functions, you must implement them as well
(you do not need specifications or invariants for helpers).

def insertion sort(b,h,k):

"""Uses insertion sort on the segment b[h..k]

Precondition: b is a list, h <= k are positions in b""".

i = h

inv: b[h..i-1] is sorted

while i <= k:

push down(b,i)

i = i + 1

post: b[h..k] is sorted

def push down(b,h,n):
j = n

inv: b[j..n] is sorted

while j > h:

if b[j-1] > b[j]:

swap(b,j-1,j)

j = j - 1

post: b[h..n] is sorted

Page 9

Last Name: First Name: Cornell Netid:

(Helper function for Insertion Sort)

def swap(b,i,j):

temp = b[i]

b[i] = b[j]

b[j] = temp

8. [?? points total] Odds and Ends.

(a) [3 points] What is an assertion? What is the relationship between an assertion and the
assert statement?

An assertion is a property or statement (about code) that is either True or False. Assertions
include preconditions, post conditions, and invariants. An assert statement is a way in
Python of enforcing an assertion.

(b) [4 points] Describe the four steps that happen when you call a constructor.

When called, the constructor does the following:

• It creates a new object (folder) of the class, setting all the field values to their defaults.

• It puts the folder into heap space

• It executes the method init defined in the body of the class. In doing so, it

– Passes the folder name to that parameter self

– Passes the other arguments in order

– Executes the commands in the body of init

• When done with init it returns the object (folder) name as final value of the
expression (e.g. the constructor call).

(c) [3 points] Explain the difference between the command import math and the command
from math import *.

When you use import math, it puts the contents of module math into a special namespace.
To access any global variable, function, or class in math, you must first prefix it with
math. When you use from math import *, it pulls the contents of math into the active
namespace. In that case, you can use all of the contents of math without a prefix.

Page 10

Last Name: First Name: Cornell Netid:

(d) [3 points] Below are three expressions. For each one, write its value. If evaluation leads
to an error, just say BAD (do not tell us the exception)

True or (5/0 < 1) (5/0 < 1) or True 3/2

(True or (5/0 < 1)) is True. Python short-circuits the evaluation when it sees the first
expression True (You only need on True in an or for it to be true).

((5/0 < 1) or True) is BAD. Division by zero raises an exception.

3/2 is 1. Integer division always rounds down.

(e) [3 points] Consider the function foo defined below.

def foo():
return 5

What is the difference between the contents of the variables x and y after the assignment
statements below?

x = foo()

y = foo

x contains 5; foo() is a function call.

y contains the name of the function definition for foo in heap space.

Page 11

