Lecture 23

Loop Invariants
Announcements for This Lecture

Assignments

• A6 due on **Wednesday**
 - Dataset should be done
 - Get on track this weekend
 - **Next Week**: ClusterGroup
• A7 will be last assignment
 - Will talk about next week
 - Posted on Tuesday
• There is lab next week
 - **No lab** week of Turkey Day

Prelim 2

• Thursday, 7:30-9pm
 - **A – K** (Uris G01)
 - **L – O** (Phillips 101)
 - **P – W** (Ives 305)
 - **X – Z** (Ives 105)
 - Conflicts received e-mail
• Graded by the weekend
 - Returned early next week
 - Regrade policy as before

11/12/15
Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.
All other cards are at face value.

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:

Play until player stops or busts
Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.
All other cards are at face value.

Your hand:
2 of Spades
10 of Clubs

Dealer's hand:
5 of Clubs

Type h for new card, s to stop:

How do we design a complex while-loop like this one?

Play until player stops or busts
Recall: Important Terminology

- **assertion**: true-false statement placed in a program to `assert` that it is true at that point
 - Can either be a comment, or an `assert` command

- **invariant**: assertion supposed to "always" be true
 - If temporarily invalidated, must make it true again
 - **Example**: class invariants and class methods

- **loop invariant**: assertion supposed to be true before and after each iteration of the loop

- **iteration of a loop**: one execution of its body
Assertions versus Asserts

• **Assertions** prevent bugs
 - Help you keep track of what you are doing
• Also **track down bugs**
 - Make it easier to check belief/code mismatches
• The **assert** statement is a (type of) assertion
 - One you are **enforcing**
 - Cannot always convert a comment to an assert

x is the sum of 1..n

Comment form of the assertion.

The root of all bugs!
Preconditions & Postconditions

• **Precondition:** assertion placed before a segment

• **Postcondition:** assertion placed after a segment

<table>
<thead>
<tr>
<th>precondition</th>
<th>postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td># x = sum of 1..n-1</td>
<td># x = sum of 1..n-1</td>
</tr>
<tr>
<td>x = x + n</td>
<td>x = x + n</td>
</tr>
<tr>
<td>n = n + 1</td>
<td>n = n + 1</td>
</tr>
</tbody>
</table>

x contains the sum of these (6)

Relationship Between Two

If **precondition** is true, then **postcondition** will be true

11/12/15 Loop Invariants
Solving a Problem

precondition

\[
x = \text{sum of } 1..n
\]

\[n = n + 1\]

postcondition

What statement do you put here to make the postcondition true?

A: \[x = x + 1\]

B: \[x = x + n\]

C: \[x = x + n+1\]

D: None of the above

E: I don’t know

11/12/15

Loop Invariants
Solving a Problem

precondition

\(x = \text{sum of } 1..n \)
n = n + 1
\(x = \text{sum of } 1..n \)

postcondition

What statement do you put here to make the postcondition true?

A: \(x = x + 1 \)
B: \(x = x + n \)
C: \(x = x + n+1 \)
D: None of the above
E: I don’t know

Remember the new value of \(n \)

11/12/15 Loop Invariants 9
Invariants: Assertions That Do Not Change

- **Loop Invariant**: an assertion that is true before and after each iteration (execution of repetend)

```plaintext
x = 0; i = 2
while i <= 5:
    x = x + i*i
    i = i + 1
# x = sum of squares of 2..5
```

Invariant:

```
x = sum of squares of 2..i-1
```

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[x = x + i \times i \]
\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
& x = x + i^2 \\
& i = i + 1
\end{align*}
\]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1: 2..1 (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[x = x + i \times i \]
\[i = i + 1 \]

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: \(2 \)

Range \(2..i-1 \): \(2..2 \)
Invariants: Assertions That Do Not Change

x = 0; i = 2

Inv: x = sum of squares of 2..i-1
while i <= 5:
 x = x + i*i
 i = i + 1

Post: x = sum of squares of 2..5

Integers that have been processed: 2, 3
Range 2..i-1: 2..3

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2\ldots i-1 \)

while \(i \leq 5 \):

\[x = x + i \times i \]
\[i = i + 1 \]

\# Post: \(x = \text{sum of squares of } 2\ldots 5 \)

Integers that have been processed:

- 2, 3, 4

Range \(2\ldots i-1 \):

- 2..4

The loop processes the range \(2\ldots 5 \)
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\[x = x + i^2 \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of 2..\(i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
 x &= x + i \times i \\
 i &= i + 1
\end{align*}
\]

Post: \(x = \) sum of squares of 2..5

Integers that have been processed: 2, 3, 4, 5

Range 2..\(i-1 \): 2..5

Invariant was always true just before test of loop condition. So it’s true when loop terminates

The loop processes the range 2..5
Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k = a
while k <= b:
 process integer k
 k = k + 1
post: integers in a..b have been processed

Command to do something

Equivalent postcondition

Loop Invariants

11/12/15
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers \(b\ldots c \) has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process \(k \))

```python
# Process \( b\ldots c \)

while k <= c:
    k = k + 1

# Postcondition: range \( b\ldots c \) has been processed
```

11/12/15 Loop Invariants
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed

while k <= c:

 k = k + 1

Postcondition: range b..c has been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

```plaintext
# Process b..c

Initialize variables (if necessary) to make invariant true

# Invariant: range b..k-1 has been processed

while k <= c:
    # Process k
    k = k + 1

# Postcondition: range b..c has been processed
```

11/12/15 Loop Invariants
Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

```
while k < n:
    # Process k;
    k = k + 1

# b is True if no int in 2..n-1 divides n, False otherwise
```

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;

 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

11/12/15

Loop Invariants
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 ... k-1 k k+1 ... n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 ... k-1 k k+1 ... n

11/12/15
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?
A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?
A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebeee', x = 2

Command to do something

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

for s = 'ebeee', x = 2
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1

inv: \(x = \) # adjacent equal pairs in s[0..k-1]

while \(k < \text{len}(s) \):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..\text{len}(s)-1]

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition

k: next integer to process.
What is initialization for k?

A: \(k = 0 \)
B: \(k = 1 \)
C: \(k = -1 \)
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
Finding an Invariant

```python
# set x to # adjacent equal pairs in s
x = 0
k = 1

# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
    # Process k
    x = x + 1 if (s[k-1] == s[k]) else 0
    k = k + 1

# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something

```
for s = 'ebeee', x = 2
```

Equivalent postcondition

```
k: next integer to process.
What is initialization for k?
A: k = 0
B: k = 1
C: k = -1
D: I don’t know
```

Which do we compare to “process” k?

```
A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
```
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[c = ?? \quad \text{Command to do something} \]
\[k = ?? \]

inv:

\textbf{while} \ k < \text{len}(s):
 \textbf{# Process k}
 \[k = k+1 \]

\textbf{# c = largest char in s}[0..\text{len}(s)-1]

1. What is the invariant?

Equivalent postcondition
Reason carefully about initialization

1. What is the invariant?

s is a string; len(s) >= 1
Set c to largest element in s

```
c = ??  Command to do something
k = ??
```

inv: c is largest element in s[0..k-1]

```
while k < len(s):
    # Process k
    k = k+1
```

c = largest char in s[0..len(s)-1]

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ?? Command to do something
k = ??

inv: c is largest element in s[0..k–1]
while k < len(s):
 # Process k
 k = k+1
c = largest char in s[0..len(s)–1]

1. What is the invariant?
2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

Command to do something
Equivalent postcondition

11/12/15
Loop Invariants
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??

Command to do something

k = ??

inv: c is largest element in s[0..k–1]

while k < len(s):
 # Process k
 k = k+1

c = largest char in s[0..len(s)-1]

Equivalent postcondition

1. What is the invariant?

2. How do we initialize c and k?

A: k = 0; c = s[0]
B: k = 1; c = s[0]
C: k = 1; c = s[1]
D: k = 0; c = s[1]
E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that 0..k–1 is not empty. You must start with k = 1.